Robert A Cheke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5954637/publications.pdf

Version: 2024-02-01

147 papers 3,607 citations

147786 31 h-index 51 g-index

149 all docs 149
docs citations

149 times ranked 2767 citing authors

#	Article	IF	CITATIONS
1	Integrated pest management models and their dynamical behaviour. Bulletin of Mathematical Biology, 2005, 67, 115-135.	1.9	203
2	State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. Journal of Mathematical Biology, 2005, 50, 257-292.	1.9	188
3	Models for integrated pest control and their biological implications. Mathematical Biosciences, 2008, 215, 115-125.	1.9	128
4	Evolution, epidemiology, and population genetics of black flies (Diptera: Simuliidae). Infection, Genetics and Evolution, 2010, 10, 846-865.	2.3	127
5	Sliding Bifurcations of Filippov Two Stage Pest Control Models with Economic Thresholds. SIAM Journal on Applied Mathematics, 2012, 72, 1061-1080.	1.8	113
6	Optimum timing for integrated pest management: Modelling rates of pesticide application and natural enemy releases. Journal of Theoretical Biology, 2010, 264, 623-638.	1.7	104
7	Multiple attractors of host–parasitoid models with integrated pest management strategies: Eradication, persistence and outbreak. Theoretical Population Biology, 2008, 73, 181-197.	1.1	78
8	Brown locust outbreaks and climate variability in southern Africa. Journal of Applied Ecology, 2002, 39, 31-42.	4.0	76
9	Health and environmental impacts of pesticide use practices: a case study of farmers in Ekiti State, Nigeria. International Journal of Agricultural Sustainability, 2009, 7, 153-163.	3.5	69
10	Characterisation of nuclear ribosomal DNA sequences from Onchocerca volvulus and Mansonella ozzardi (Nematoda: Filarioidea) and development of a PCR-based method for their detection in skin biopsies. International Journal for Parasitology, 2001, 31, 169-177.	3.1	61
11	Model-Based Geostatistical Mapping of the Prevalence of Onchocerca volvulus in West Africa. PLoS Neglected Tropical Diseases, 2016, 10, e0004328.	3.0	59
12	Dynamical analysis of plant disease models with cultural control strategies and economic thresholds. Mathematics and Computers in Simulation, 2010, 80, 894-921.	4.4	57
13	Threshold conditions for integrated pest management models with pesticides that have residual effects. Journal of Mathematical Biology, 2013, 66, 1-35.	1.9	57
14	Does Increasing Treatment Frequency Address Suboptimal Responses to Ivermectin for the Control and Elimination of River Blindness?. Clinical Infectious Diseases, 2016, 62, 1338-1347.	5.8	54
15	Molecular systematics of five Onchocerca species (Nematoda: Filarioidea) including the human parasite, O. volvulus, suggest sympatric speciation. Journal of Helminthology, 2006, 80, 281-90.	1.0	53
16	Campus quarantine (Fengxiao) for curbing emergent infectious diseases: Lessons from mitigating A/H1N1 in Xi'an, China. Journal of Theoretical Biology, 2012, 295, 47-58.	1.7	51
17	Onchocerciasis Transmission in Ghana: Persistence under Different Control Strategies and the Role of the Simuliid Vectors. PLoS Neglected Tropical Diseases, 2015, 9, e0003688.	3.0	50
18	Global analysis of a Holling type II predator–prey model with a constant prey refuge. Nonlinear Dynamics, 2014, 76, 635-647.	5.2	49

#	Article	IF	CITATIONS
19	The elimination of the onchocerciasis vector from the island of Bioko as a result of larviciding by the WHO African Programme for Onchocerciasis Control. Acta Tropica, 2009, 111, 211-218.	2.0	47
20	Variation and distribution of forms of <i>Simulium soubrense </i> Africa. Annals of Tropical Medicine and Parasitology, 1983, 77, 627-640.	1.6	44
21	Potential effects of warmer worms and vectors on onchocerciasis transmission in West Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130559.	4.0	44
22	Global dynamics of a state-dependent feedback control system. Advances in Difference Equations, 2015, 2015, .	3.5	43
23	Complex dynamics of desert locust plagues. Ecological Entomology, 1993, 18, 109-115.	2.2	41
24	An integrated pest management model with delayed responses to pesticide applications and its threshold dynamics. Nonlinear Analysis: Real World Applications, 2012, 13, 2352-2374.	1.7	39
25	Analytical methods for detecting pesticide switches with evolution of pesticide resistance. Mathematical Biosciences, 2013, 245, 249-257.	1.9	39
26	Onchocerciasis (river blindness) – more than a century of research and control. Acta Tropica, 2021, 218, 105677.	2.0	39
27	Migration, Patchiness, and Population Processes Illustrated by Two Migrant Pests. BioScience, 2007, 57, 145-154.	4.9	36
28	A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations. Journal of Theoretical Biology, 2016, 411, 27-36.	1.7	36
29	The fecundity of <i>Simulium damnosum s.l.</i> in northern Togo and infections with <i>Onchocerca</i> spp Annals of Tropical Medicine and Parasitology, 1982, 76, 561-568.	1.6	35
30	Enhanced West Nile virus surveillance in the North Kent marshes, UK. Parasites and Vectors, 2015, 8, 91.	2.5	35
31	Models to assess how best to replace dengue virus vectors with Wolbachia -infected mosquito populations. Mathematical Biosciences, 2015, 269, 164-177.	1.9	35
32	Modelling the effects of contaminated environments on HFMD infections in mainland China. BioSystems, 2016, 140, 1-7.	2.0	34
33	Indices of onchocerciasis transmission by different members of the Simulium damnosum complex conflict with the paradigm of forest and savanna parasite strains. Acta Tropica, 2013, 125, 43-52.	2.0	33
34	Optimal impulsive harvesting on non-autonomous Beverton–Holt difference equations. Nonlinear Analysis: Theory, Methods & Applications, 2006, 65, 2311-2341.	1.1	32
35	Onchocerciasis transmission in Ghana: biting and parous rates of host-seeking sibling species of the Simulium damnosum complex. Parasites and Vectors, 2014, 7, 511.	2.5	32
36	Modeling the Effects of Augmentation Strategies on the Control of Dengue Fever With an Impulsive Differential Equation. Bulletin of Mathematical Biology, 2016, 78, 1968-2010.	1.9	32

#	Article	IF	CITATIONS
37	Deforestation and the spatio-temporal distribution of savannah and forest members of the Simulium damnosum complex in southern Ghana and south-western Togo. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2002, 96, 632-639.	1.8	31
38	Impact of Hospital Bed Shortages on the Containment of COVID-19 in Wuhan. International Journal of Environmental Research and Public Health, 2020, 17, 8560.	2.6	30
39	Birth-pulse models of Wolbachia-induced cytoplasmic incompatibility in mosquitoes for dengue virus control. Nonlinear Analysis: Real World Applications, 2015, 22, 236-258.	1.7	29
40	A general model of hormesis in biological systems and its application to pest management. Journal of the Royal Society Interface, 2019, 16, 20190468.	3.4	29
41	A review of the impacts of control operations against the red-billed quelea (Quelea quelea) on non-target organisms. Environmental Conservation, 2004, 31, 130-137.	1.3	28
42	A Feedback Control Model of Comprehensive Therapy for Treating Immunogenic Tumours. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650039.	1.7	27
43	A preliminary analysis of the population genetics and molecular phylogenetics of Onchocerca volvulus (Nematoda: Filarioidea) using nuclear ribosomal second internal transcribed spacer sequences. Memorias Do Instituto Oswaldo Cruz, 2007, 102, 879-882.	1.6	26
44	Host Spatial Pattern, Parasitoid Interference and the Modelling of the Dynamics of Alaptus fusculus (Hym.: Mymaridae), a Parasitoid of Two Mesopsocus Species (Psocoptera). Journal of Animal Ecology, 1975, 44, 767.	2.8	25
45	Lack of genetic and plumage differentiation in the red-billed quelea Quelea quelea across a migratory divide in southern Africa. Molecular Ecology, 2003, 12, 345-353.	3.9	25
46	Stability and change in the distribution of cytospecies of the Simulium damnosum complex (Diptera:) Tj ETQq(0 0 rgBT /0	Overlock 10 Tf 25
47	Stochastic Modelling of Air Pollution Impacts on Respiratory Infection Risk. Bulletin of Mathematical Biology, 2018, 80, 3127-3153.	1.9	25
48	Cytotaxonomy, morphology and molecular systematics of the Bioko form of Simulium yahense (Diptera: Simuliidae). Bulletin of Entomological Research, 2003, 93, 145-157.	1.0	24
49	Global stability and sliding bifurcations of a non-smooth Gause predator–prey system. Applied Mathematics and Computation, 2013, 224, 9-20.	2.2	23
50	Models of impulsive culling of mosquitoes to interrupt transmission of West Nile virus to birds. Applied Mathematical Modelling, 2015, 39, 3549-3568.	4.2	23
51	Forecasting suitable breeding conditions for the red-billed quelea Quelea quelea in southern Africa. Journal of Applied Ecology, 2007, 44, 523-533.	4.0	22
52	Effects of Predator and Prey Dispersal on Success or Failure of Biological Control. Bulletin of Mathematical Biology, 2009, 71, 2025-2047.	1.9	22
53	Linking key intervention timing to rapid decline of the COVID-19 effective reproductive number to quantify lessons from mainland China. International Journal of Infectious Diseases, 2020, 97, 296-298.	3.3	22
54	Piecewise virus-immune dynamic model with HIV-1 RNA-guided therapy. Journal of Theoretical Biology, 2015, 377, 36-46.	1.7	21

#	Article	IF	CITATIONS
55	Models for determining how many natural enemies to release inoculatively in combinations of biological and chemical control with pesticide resistance. Journal of Mathematical Analysis and Applications, 2015, 422, 1479-1503.	1.0	21
56	Incorporating prey refuge into a predator–prey system with imprecise parameter estimates. Computational and Applied Mathematics, 2017, 36, 1067-1084.	1.3	21
57	Quantifying competitive advantages of mutant strains in a population involving importation and mass vaccination rollout. Infectious Disease Modelling, 2021, 6, 988-996.	1.9	21
58	Models of desert locust phase changes. Ecological Modelling, 1996, 91, 131-137.	2.5	20
59	Nonlinear state-dependent feedback control of a pest-natural enemy system. Nonlinear Dynamics, 2018, 94, 2243-2263.	5.2	20
60	Thresholds for extinction and proliferation in a stochastic tumour-immune model with pulsed comprehensive therapy. Communications in Nonlinear Science and Numerical Simulation, 2019, 73, 363-378.	3.3	20
61	Theoretical rates of increase of gregarious and solitarious populations of the Desert Locust. Oecologia, 1978, 35, 161-171.	2.0	19
62	Adaptive Release of Natural Enemies in a Pest-Natural Enemy System with Pesticide Resistance. Bulletin of Mathematical Biology, 2013, 75, 2167-2195.	1.9	19
63	Modelling pulsed immunotherapy of tumour–immune interaction. Mathematics and Computers in Simulation, 2015, 109, 92-112.	4.4	19
64	A threshold policy to interrupt transmission of West Nile Virus to birds. Applied Mathematical Modelling, 2016, 40, 8794-8809.	4.2	19
65	Effects of medical resource capacities and intensities of public mitigation measures on outcomes of COVID-19 outbreaks. BMC Public Health, 2021, 21, 605.	2.9	19
66	A model for evaluating interventions designed to reduce post-harvest fish losses. Fisheries Research, 1998, 35, 219-227.	1.7	18
67	Variation in haematozoan parasitism at local and landscape levels in the red-billed quelea Quelea quelea. Journal of Avian Biology, 2007, 38, 662-671.	1.2	18
68	Induction of apoptosis in host cells: a survival mechanism for <i>Leishmania</i> parasites?. Parasitology, 2008, 135, 1391-1399.	1.5	18
69	Beverton–Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance. Communications in Nonlinear Science and Numerical Simulation, 2016, 36, 327-341.	3.3	18
70	A combination of climatic conditions determines major within-season dengue outbreaks in Guangdong Province, China. Parasites and Vectors, 2019, 12, 45.	2.5	18
71	Modelling effects of a chemotherapeutic dose response on a stochastic tumour-immune model. Chaos, Solitons and Fractals, 2019, 123, 1-13.	5.1	18
72	Periodicity and stability in a single-species model governed by impulsive differential equation. Applied Mathematical Modelling, 2012, 36, 1085-1094.	4.2	17

#	Article	IF	CITATIONS
73	Elimination of the Djodji form of the blackfly Simulium sanctipauli sensu stricto as a result of larviciding by the WHO Onchocerciasis Control Programme in West Africa. Medical and Veterinary Entomology, 2008, 22, 172-174.	1.5	16
74	Soil moisture assessments for brown locust <i>Locustana pardalina</i> breeding potential using synthetic aperture radar. Journal of Applied Remote Sensing, 2014, 8, 084898.	1.3	16
75	Seasonal variation in onchocerciasis transmission by Simulium squamosum at perennial breeding sites in Togo. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1992, 86, 67-71.	1.8	15
76	Cytotaxonomic confirmation of two forms of Simulium sirbanum in the eastern part of the Onchocerciasis Control Programme in West Africa. Medical and Veterinary Entomology, 1992, 6, 139-142.	1.5	15
77	Modelling the impact of larviciding on the population dynamics and biting rates of Simulium damnosum (s.l.): implications for vector control as a complementary strategy for onchocerciasis elimination in Africa. Parasites and Vectors, 2018, 11, 316.	2.5	15
78	An ecological study of the egg-pods ofOedaleus senegalensis(Krauss) (Orthoptera: Acrididae). Journal of Natural History, 1980, 14, 363-371.	0.5	14
79	The Beffa form of Simulium soubrense of the S.damnosum complex in Togo and Benin. Medical and Veterinary Entomology, 1987, 1, 29-35.	1.5	14
80	The Effect of Cicerfuran, an Arylbenzofuran fromCicer bijugum, and Related Benzofurans and Stilbenes onLeishmania aethiopica,L.tropicaandL.major. Planta Medica, 2006, 72, 907-911.	1.3	14
81	Defining the key wintering habitats in the Sahel for declining African-Eurasian migrants using expert assessment. Bird Conservation International, 2014, 24, 477-491.	1.3	14
82	Factors affecting onchocerciasis transmission: lessons for infection control. Expert Review of Anti-Infective Therapy, 2017, 15, 377-386.	4.4	14
83	Distribution of the Simulium damnosum complex on Bioko island, Equatorial Guinea, and the potential for onchocerciasis elimination by vector eradication. Medical and Veterinary Entomology, 1998, 12, 267-275.	1.5	13
84	Existence and global asymptotic stability of positive almost periodic solutions of a two-species competitive system. International Journal of Biomathematics, 2014, 07, 1450040.	2.9	13
85	Potential vector for West Nile virus prevalent in Kent. Veterinary Record, 2014, 175, 284-285.	0.3	13
86	Modelling the regulatory system for diabetes mellitus with a threshold window. Communications in Nonlinear Science and Numerical Simulation, 2015, 22, 478-491.	3.3	13
87	Models to assess the effects of non-identical sex ratio augmentations of Wolbachia -carrying mosquitoes on the control of dengue disease. Mathematical Biosciences, 2018, 299, 58-72.	1.9	13
88	Potential rates of Increase of solitarious and gregarious phases of the African armyworm Spodoptera exempta (Lepidoptera: Noctuidae). Ecological Entomology, 1995, 20, 319-325.	2.2	12
89	Coexistence and partial extinction in a delay competitive system subject to impulsive harvesting and stocking. IMA Journal of Applied Mathematics, 2010, 75, 777-795.	1.6	12
90	Completion of the sequence of the nuclear ribosomal DNA subunit of Simulium sanctipauli, with descriptions of the 18S, 28S genes and the IGS. Medical and Veterinary Entomology, 2002, 16, 386-394.	1.5	11

#	Article	IF	CITATIONS
91	Potential vectors of loiasis and other tabanids on the island of Bioko, Equatorial Guinea. Medical and Veterinary Entomology, 2003, 17, 221-223.	1.5	11
92	Onchocerciasis transmission in Ghana: the human blood index of sibling species of the Simulium damnosum complex. Parasites and Vectors, 2016, 9, 432.	2.5	11
93	Ecological characteristics of Simulium breeding sites in West Africa. Acta Tropica, 2017, 167, 148-156.	2.0	11
94	Distribution of the Simulium metallicum complex in Mexico in relation to selected environmental variables. Medical and Veterinary Entomology, 1999, 13, 139-149.	1.5	10
95	Effects of the organophosphate fenthion for control of the red-billed quelea Quelea quelea on cholinesterase and haemoglobin concentrations in the blood of target and non-target birds. Ecotoxicology, 2012, 21, 1761-1770.	2.4	10
96	The Effects of Resource Limitation on a Predator-Prey Model with Control Measures as Nonlinear Pulses. Mathematical Problems in Engineering, 2014, 2014, 1-13.	1.1	10
97	The regulatory system for diabetes mellitus: Modeling rates of glucose infusions and insulin injections. Communications in Nonlinear Science and Numerical Simulation, 2016, 37, 305-325.	3.3	10
98	A review of alternatives to fenthion for quelea bird control. Crop Protection, 2019, 116, 15-23.	2.1	10
99	The vector status of Simulium damnosum on the island of Bioko in Equatorial Guinea. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1997, 91, 153-154.	1.8	9
100	Field and laboratory studies on water conditions affecting the potency of VectoBacR (Bacillus) Tj ETQq0 0 0 rgB1 Veterinary Entomology, 2005, 19, 404-412.	Overlock	₹ 10 Tf 50 38 9
101	Soil contamination and persistence of pollutants following organophosphate sprays and explosions to control redâ€billed quelea (<i>Quelea quelea</i>). Pest Management Science, 2013, 69, 386-396.	3.4	9
102	Threshold Dynamics and Bifurcation of a State-Dependent Feedback Nonlinear Control Susceptible–Infected–Recovered Model1. Journal of Computational and Nonlinear Dynamics, 2019, 14, .	1,2	9
103	Nonlinear Pulse Vaccination in an SIR Epidemic Model with Resource Limitation. Abstract and Applied Analysis, 2013, 2013, 1-13.	0.7	8
104	Taking the strain out of onchocerciasis? A reanalysis of blindness and transmission data does not support the existence of a savannah blinding strain of onchocerciasis in West Africa. Advances in Parasitology, 2021, 112, 1-50.	3.2	8
105	Evidence for a Causal Relationship between the Solar Cycle and Locust Abundance. Agronomy, 2021, 11, 69.	3.0	8
106	Assessment of rDNA ICS as a molecular marker in the Simulium damnosum complex. Medical and Veterinary Entomology, 2002, 16, 395-403.	1.5	7
107	Thinking Long Term. Science, 2007, 318, 577-578.	12.6	7
108	Conservation Concern for the Deteriorating Geographical Range of the Grey Parrot in Cameroon. International Journal of Ecology, 2014, 2014, 1-15.	0.8	7

#	Article	IF	Citations
109	Global dynamics of a piece-wise epidemic model with switching vaccination strategy. Discrete and Continuous Dynamical Systems - Series B, 2014, 19, 2915-2940.	0.9	7
110	Cumulative effects of incorrect use of pesticides can lead to catastrophic outbreaks of pests. Chaos, Solitons and Fractals, 2017, 100, 7-19.	5.1	7
111	Coupling the Macroscale to the Microscale in a Spatiotemporal Context to Examine Effects of Spatial Diffusion on Disease Transmission. Bulletin of Mathematical Biology, 2020, 82, 58.	1.9	7
112	Differences in the male scutal patterns of putative Simulium sirbanum. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1987, 81, 672-673.	1.8	6
113	Experimental hybridization between members of the Simulium damnosum complex. Medical and Veterinary Entomology, 1987, 1, 193-199.	1.5	6
114	Effects of tsetse targets on mammals and birds in Kasungu National Park, Malawi. Biodiversity and Conservation, 2001, 10, 869-891.	2.6	6
115	The blackflies (Diptera: Simuliidae) of Bioko (Republic of Equatorial Guinea) and the Gulf of Guinea with a description of the larvae of the †Pomeroy†form of Simulium cervicornutum. Systematic Entomology, 2006, 31, 611-620.	3.9	6
116	Alternative approaches to Red-billed Quelea <i>Quelea quelea </i> management: mass-capture for food. Ostrich, 2014, 85, 31-37.	1.1	5
117	Predator–prey population models of migrant insects with phase change. ICES Journal of Marine Science, 2014, 71, 2221-2230.	2.5	5
118	A Locust Phase Change Model with Multiple Switching States and Random Perturbation. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1630037.	1.7	5
119	A discrete host-parasitoid model with development of pesticide resistance and IPM strategies. Journal of Biological Dynamics, 2018, 12, 1059-1078.	1.7	5
120	Optimal threshold density in a stochastic resource management model with pulse intervention. Natural Resource Modelling, 2019, 32, .	2.0	5
121	A Universal Delayed Difference Model Fitting Dose-response Curves. Dose-Response, 2021, 19, 155932582110627.	1.6	5
122	The thermal constant of the onchocerciasis vector <i>Simulium damnosum</i> s.l. in West Africa. Medical and Veterinary Entomology, 2012, 26, 236-238.	1.5	4
123	Pure Bt-crop and mixed seed sowing strategies for optimal economic profit in the face of pest resistance to pesticides and Bt-corn. Applied Mathematics and Computation, 2016, 283, 6-21.	2.2	4
124	Micro T imaging of Onchocerca infection of Simulium damnosum s.l. blackflies and comparison of the peritrophic membrane thickness of forest and savannah flies. Medical and Veterinary Entomology, 2021, 35, 231-238.	1.5	4
125	Micro-CT visualization of a promastigote secretory gel (PSG) and parasite plug in the digestive tract of the sand fly Lutzomyia longipalpis infected with Leishmania mexicana. PLoS Neglected Tropical Diseases, 2021, 15, e0009682.	3.0	4
126	Threshold dynamics of a stochastic model of intermittent androgen deprivation therapy for prostate cancer. Communications in Nonlinear Science and Numerical Simulation, 2021, 100, 105856.	3.3	4

#	Article	IF	CITATIONS
127	Complex dynamics and coexistence of period-doubling and period-halving bifurcations in an integrated pest management model with nonlinear impulsive control. Advances in Difference Equations, 2020, 2020, .	3.5	4
128	Distribution and Relative Abundance of Bean Leaf Beetles (Ootheca spp.) (Insecta: Coleoptera:) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 70
129	Anthropophily, zoophily and roles in onchocerciasis transmission of the Djodji form of Simulium sanctipauli and S. squamosum in a forest zone of Togo. Tropical Medicine and Parasitology: Official Organ of Deutsche Tropenmedizinische Gesellschaft and of Deutsche Gesellschaft Fþr Technische Zusammenarbeit (GTZ). 1988, 39, 123-7.	0.2	4
130	Seasonal size variation in females of the Simulium damnosum complex in the Ivory Coast. Tropenmedizin Und Parasitologie, 1980, 31, 381-5.	0.2	4
131	Cycles in daily catches of members of the Simulium damnosum species complex. Tropical Medicine and Parasitology: Official Organ of Deutsche Tropenmedizinische Gesellschaft and of Deutsche Gesellschaft FŽr Technische Zusammenarbeit (GTZ), 1995, 46, 247-52.	0.2	4
132	Towards the Elimination of the Bioko Form of Simulium Yahense from Bioko: Planning and Insecticide Trials. Acta Zoologica Lituanica, 2009, 19, 132-141.	0.3	3
133	Duality in Phase Space and Complex Dynamics of an Integrated Pest Management Network Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550103.	1.7	3
134	New pests for old as GMOs bring on substitute pests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8239-8240.	7.1	3
135	Mosquito Magnet \hat{A}^{\otimes} traps as a potential means of monitoring blackflies of medical and veterinary importance. Medical and Veterinary Entomology, 2021, 35, 646-651.	1.5	3
136	Fecundities of different members of the Simulium damnosum species complex in Togo. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1986, 80, 489-490.	1.8	2
137	A Holling Type II Discrete Switching Host-Parasitoid System with a Nonlinear Threshold Policy for Integrated Pest Management. Discrete Dynamics in Nature and Society, 2020, 2020, 1-14.	0.9	2
138	Complexities and Bifurcations Induced by Drug Responses in a Pulsed Tumour-Immune Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050104.	1.7	2
139	Capture of high numbers of Simulium vectors can be achieved with Host Decoy Traps to support data acquisition in the onchocerciasis elimination endgame. Acta Tropica, 2021, 221, 106020.	2.0	2
140	Flexibility in the timing of post-nuptial moult among Red-billed Queleas Quelea quelea in Botswana in relation to the timing of breeding. Ostrich, 2007, 78, 555-559.	1.1	1
141	Inverse density dependence of parity rates in the onchocerciasis vector <i>Simulium damnosum s.l.</i> . Medical and Veterinary Entomology, 2016, 30, 85-88.	1.5	1
142	Ecological characteristics of pre-imaginal stages of blackflies (Diptera: Simuliidae) in Southern England. Aquatic Insects, 0, , 1-18.	0.9	1
143	Variation in haematozoan parasitism at local and landscape levels in the red-billed quelea Quelea quelea. Journal of Avian Biology, 2007, .	1.2	1
144	A temporary focus of savanna species of the Simulium damnosum complex in the forest zone of Liberia. Tropical Medicine and Parasitology: Official Organ of Deutsche Tropenmedizinische Gesellschaft and of Deutsche Gesellschaft Für Technische Zusammenarbeit (GTZ), 1991, 42, 181-7.	0.2	1

ROBERT A CHEKE

#	Article	IF	CITATIONS
145	Analyses of density-dependent effects are needed to understand how and when Wolbachia can control dengue vectors. BMC Biology, 2016, 14, 99.	3.8	O
146	Professor Rolf Garms. Parasitology Research, 2022, , 1.	1.6	0
147	Home quarantine or centralized quarantine? A mathematical modelling study on the COVID-19 epidemic in Guangzhou in 2021. Mathematical Biosciences and Engineering, 2022, 19, 9060-9078.	1.9	O