David Saltz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5954563/publications.pdf

Version: 2024-02-01

130	6,089	34	72
papers	citations	h-index	g-index
133	133 docs citations	133	6802
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Wildlife Management. , 2024, , 402-409.		1
2	The value of faecal N in monitoring dietary quality in desert ungulates: The Arabian oryx as a model. Journal of Arid Environments, 2022, 201, 104750.	1.2	2
3	Estimating the Suitability for the Reintroduced Arabian Oryx (Oryx leucoryx, Pallas 1777) of Two Desert Environments by NIRS-Aided Fecal Chemistry. Remote Sensing, 2021, 13, 1876.	1.8	5
4	Settling in: Reintroduced Persian Fallow Deer Adjust the Borders and Habitats of Their Home-Range During the First 5 Years Post Release. Frontiers in Conservation Science, 2021, 2, .	0.9	5
5	Finding a Home: Stopping Theory and Its Application to Home Range Establishment in a Novel Environment. Frontiers in Conservation Science, 2021, 2, .	0.9	3
6	Faecal pellets, rock shelters, and seasonality: The chemistry of stabling in the Negev of Israel in late prehistory. Journal of Arid Environments, 2020, 181, 104219.	1.2	9
7	Roads and Road-Posts as an Ecological Trap for Cavity Nesting Desert Birds. Frontiers in Conservation Science, 2020, 1, .	0.9	6
8	Longâ€ŧerm reevaluation of spatially explicit models as a means for adaptive wildlife management. Ecological Applications, 2020, 30, e02088.	1.8	3
9	The crucial but underrepresented role of philosophy in conservation science curricula. Conservation Biology, 2019, 33, 217-220.	2.4	10
10	The agricultural landscape matters: spider diversity and abundance in pomegranate orchards as a case study. BioControl, 2019, 64, 583-593.	0.9	8
11	Invisible barriers: anthropogenic impacts on inter- and intra-specific interactions as drivers of landscape-independent fragmentation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180049.	1.8	47
12	Conservation implications of habituation in Nubian ibex in response to ecotourism. Animal Conservation, 2019, 22, 220-227.	1.5	15
13	Effect of supplemental feeding on nesting success in the Lesser Kestrel (Falco naumanni). Israel Journal of Ecology and Evolution, 2019, 65, 71-76.	0.2	2
14	Nest-site fidelity in Lesser Kestrels: a case of Win–Stay/Lose–Shift?. Israel Journal of Ecology and Evolution, 2019, 65, 106-110.	0.2	1
15	Managing anthropogenic driven range expansion behaviourally: Mediterranean bats in desert ecosystems. European Journal of Wildlife Research, 2018, 64, 1.	0.7	8
16	Revealing lifeâ€history traits by contrasting genetic estimations with predictions of effective population size. Conservation Biology, 2018, 32, 817-827.	2.4	5
17	Effect of nest-site microclimatic conditions on nesting success in the Lesser Kestrel <i>Falco naumanni</i> . Bird Study, 2018, 65, 444-450.	0.4	9
18	Unequal density dependence between survival and recruitment affects harvesting effectivness. Journal of Wildlife Management, 2018, 82, 1756-1766.	0.7	5

#	Article	IF	Citations
19	Increased mammal nocturnality in agricultural landscapes results in fragmentation due to cascading effects. Biological Conservation, 2018, 226, 32-41.	1.9	62
20	Changes in wildlife temporal niche should concern conservationists. , 2018, , .		0
21	Fine-scale temporal and spatial population fluctuations of medium sized carnivores in a Mediterranean agricultural matrix. Landscape Ecology, 2017, 32, 1243.	1.9	13
22	Zebra migration strategies and anthrax in Etosha National Park, Namibia. Ecosphere, 2017, 8, e01925.	1.0	27
23	Cattle grazing effects on mountain gazelles in Mediterranean natural landscapes. Journal of Wildlife Management, 2017, 81, 1351-1362.	0.7	7
24	Evaluation of noninvasive genetic methods for Nubian ibex. Conservation Genetics Resources, 2017, 9, 181-183.	0.4	0
25	Inferring detailed space use from movement paths: A unifying, residence timeâ€based framework. Ecology and Evolution, 2017, 7, 8507-8514.	0.8	6
26	Endozoochory by the Persian fallow deer (Dama mesopotamica) reintroduced in Israel: species richness and germination success. Israel Journal of Ecology and Evolution, 2016, 63, 1-7.	0.2	0
27	Behavior-based management: using behavioral knowledge to improve conservation and management efforts., 2016,, 147-148.		0
28	Learning and conservation behavior: an introduction and overview., 2016,, 66-92.		10
29	Behavioral rigidity in the face of rapid anthropogenic changes. , 2016, , 95-120.		5
30	Anthropogenic impacts on behavior: the pros and cons of plasticity., 2016,, 121-146.		4
31	The role of animal sensory perception in behavior-based management. , 2016, , 149-175.		10
32	Behavior-based management: conservation translocations. , 2016, , 212-246.		11
33	From individual behavior to population viability: implications for conservation and management. , 2016, , 247-274.		2
34	Manipulating animal behavior to ensure reintroduction success., 2016,, 275-304.		33
35	Direct behavioral indicators as a conservation and management tool., 2016,, 307-351.		13
36	Determinants of emigration and their impact on survival during dispersal in fox and jackal populations. Scientific Reports, 2016, 6, 24021.	1.6	15

#	Article	IF	Citations
37	Introduction: the whys and the hows of conservation behavior. , 2016, , 3-35.		4
38	Research Priorities from Animal Behaviour for Maximising Conservation Progress. Trends in Ecology and Evolution, 2016, 31, 953-964.	4.2	121
39	A systematic survey of the integration of animal behavior into conservation. Conservation Biology, 2016, 30, 744-753.	2.4	93
40	Everybody loses: intraspecific competition induces tragedy of the commons in Allenby's gerbils. Ecology, 2015, 96, 54-61.	1.5	16
41	The Exploration-Exploitation Dilemma: A Multidisciplinary Framework. PLoS ONE, 2014, 9, e95693.	1.1	147
42	Using the movement patterns of reintroduced animals to improve reintroduction success. Environmental Epigenetics, 2014, 60, 515-526.	0.9	87
43	Past experiences and future expectations generate context-dependent costs of foraging. Behavioral Ecology and Sociobiology, 2014, 68, 1769-1776.	0.6	11
44	Redundancy in seed dispersal by three sympatric ungulates: a reintroduction perspective. Animal Conservation, 2014, 17, 565-572.	1.5	19
45	Genetic Diversity of the Eurasian Otter (Lutra lutra) Population in Israel. Journal of Heredity, 2013, 104, 192-201.	1.0	5
46	Simple rules for complex landscapes: the case of hilltopping movements and topography. Oikos, 2013, 122, 1483-1495.	1.2	10
47	Wildlife Management. , 2013, , 403-407.		0
48	Effectiveness of Multiple Release Sites in Reintroduction of Persian Fallow Deer. Conservation Biology, 2012, 26, 107-115.	2.4	6
49	Integrating animal behavior and conservation biology: a conceptual framework. Behavioral Ecology, 2011, 22, 236-239.	1.0	223
50	Reintroduction As an Ecosystem Restoration Technique. Conservation Biology, 2011, 25, 424-424.	2.4	57
51	The effect of anthropogenic resources on the spaceâ€use patterns of golden jackals. Journal of Wildlife Management, 2011, 75, 132-136.	0.7	36
52	Does interspecific competition drive patterns of habitat use in desert bat communities?. Oecologia, 2011, 167, 493-502.	0.9	66
53	Design and Implementation of Schedule-Based TradingStrategies Based on Uncertainty Bands. Journal of Trading, 2011, 6, 45-52.	0.2	6
54	Reintroducing the Persian fallow deer Dama mesopotamica in Israel - a chronology. Animal Production Science, 2011, 51, 251.	0.6	13

#	Article	IF	CITATIONS
55	Pond characteristics as determinants of species diversity and community composition in desert bats. Animal Conservation, 2010, 13, 505-513.	1.5	78
56	Ecological Trap for Desert Lizards Caused by Anthropogenic Changes in Habitat Structure that Favor Predator Activity. Conservation Biology, 2010, 24, 803-809.	2.4	70
57	Abrupt spatial and numerical responses of overabundant foxes to a reduction in anthropogenic resources. Journal of Applied Ecology, 2010, 47, 1262-1271.	1.9	123
58	Statistical Inference and Decision Making in Conservation Biology. Israel Journal of Ecology and Evolution, 2010, 57, 309-317.	0.2	8
59	On otter spraints, the advancement of science, and analogies: A reply to Calzada et al Ecological Indicators, 2010, 10, 562-563.	2.6	1
60	Behavioral Changes, Stress, and Survival Following Reintroduction of Persian Fallow Deer from Two Breeding Facilities. Conservation Biology, 2009, 23, 1026-1035.	2.4	41
61	Community homogenization and the invasiveness of commensal species in Mediterranean afforested landscapes. Biological Invasions, 2008, 10, 507-515.	1.2	22
62	Conservation implications of competition between generalist and specialist rodents in Mediterranean afforested landscape. Biodiversity and Conservation, 2008, 17, 2513-2523.	1.2	11
63	Leaf compensatory growth as a tolerance strategy to resist herbivory in Pancratium sickenbergeri. Plant Ecology, 2008, 198, 19-26.	0.7	25
64	A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19052-19059.	3.3	2,043
65	Simulated dynamics of Arabian Oryx (Oryx leucoryx) in the Israeli Negev: Effects of migration corridors and post-reintroduction changes in natality on population viability. Ecological Modelling, 2008, 210, 169-178.	1.2	9
66	The role of size inequality in self-thinning: A pattern-oriented simulation model for arid savannas. Ecological Modelling, 2008, 210, 431-445.	1.2	35
67	Using spatially expanding populations as a tool for evaluating landscape planning: The reintroduced Persian fallow deer as a case study. Journal for Nature Conservation, 2008, 16, 164-174.	0.8	16
68	Using videotaping to validate the use of spraints as an index of Eurasian otter (Lutra lutra) activity. Ecological Indicators, 2008, 8, 462-465.	2.6	24
69	A framework for generating and analyzing movement paths on ecological landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19066-19071.	3.3	168
70	Host defence versus intraspecific competition in the regulation of infrapopulations of the flea Xenopsylla conformis on its rodent host Meriones crassus. International Journal for Parasitology, 2007, 37, 919-925.	1.3	19
71	Editorial Comment: Performance and Cognition. Theatre Journal, 2007, 59, ix-xiii.	0.0	3
72	A patch-dynamics approach to savanna dynamics and woody plant encroachment – Insights from an arid savanna. Perspectives in Plant Ecology, Evolution and Systematics, 2006, 7, 229-242.	1.1	191

#	Article	IF	CITATIONS
73	The Impact of Increased Environmental Stochasticity Due to Climate Change on the Dynamics of Asiatic Wild Ass. Conservation Biology, 2006, 20, 1402-1409.	2.4	45
74	Flea infestation and energy requirements of rodent hosts: are there general rules?. Functional Ecology, 2006, 20, 1028-1036.	1.7	28
7 5	The effects of herbivory and resource variability on the production of a second inflorescence by the desert lily, Pancratium sickenbergeri. Plant Ecology, 2006, 186, 47-55.	0.7	4
76	Population Differentiation and the Effects of Herbivory and Sand Compaction on the Subterranean Growth of a Desert Lily. Journal of Heredity, 2006, 97, 409-416.	1.0	5
77	Virtual Corridors for Conservation Management. Conservation Biology, 2005, 19, 1997-2003.	2.4	25
78	Demographic Models and Reality in Reintroductions: Persian Fallow Deer in Israel. Conservation Biology, 2005, 19, 131-138.	2.4	68
79	Multiâ€scale patterns and bush encroachment in an arid savanna with a shallow soil layer. Journal of Vegetation Science, 2005, 16, 311-320.	1.1	123
80	TEMPORAL AND SPATIAL INFLUENCES ON ROAD MORTALITY IN OTTERS: CONSERVATION IMPLICATIONS. Israel Journal of Zoology, 2005, 51, 199-207.	0.2	9
81	PREDICTING THE SPATIAL DYNAMICS OF A REINTRODUCED POPULATION: THE PERSIAN FALLOW DEER. , 2005, 15, 1833-1846.		24
82	EFFECTS OF HUMAN DISTURBANCE ON USE OF SPACE AND FLIGHT DISTANCE OF MOUNTAIN GAZELLES. Journal of Wildlife Management, 2005, 69, 1683-1690.	0.7	26
83	THE GOLAN WOLVES: THE DYNAMICS, BEHAVIORAL ECOLOGY, AND MANAGEMENT OF AN ENDANGERED PEST. Israel Journal of Zoology, 2005, 51, 87-133.	0.2	11
84	Multi-scale patterns and bush encroachment in an arid savanna with a shallow soil layer., 2005, 16, 311.		22
85	Response to topography in a hilltopping butterfly and implications for modelling nonrandom dispersal. Animal Behaviour, 2004, 68, 825-839.	0.8	47
86	Spatio-Temporal Rainfall Variation and Stock Management in Arid Namibia. Journal of Range Management, 2004, 57, 130.	0.3	23
87	The impact of free-roaming dogs on gazelle kid/female ratio in a fragmented area. Biological Conservation, 2004, 119, 231-236.	1.9	80
88	Maternal age is a predominant determinant of progeny sex ratio variation in ungulates: a reply to Hewison et al Oikos, 2003, 101, 646-648.	1.2	11
89	IMPACT OF HUMAN NUISANCE DISTURBANCE ON VIGILANCE AND GROUP SIZE OF A SOCIAL UNGULATE. , 2003, 13, 1830-1834.		89
90	Seasonal and Circadian Changes in the Home Ranges of Reintroduced Persian Fallow Deer. Journal of Wildlife Management, 2003, 67, 485.	0.7	26

#	Article	IF	Citations
91	Impact of Repeated Releases on Space-Use Patterns of Persian Fallow Deer. Journal of Wildlife Management, 2002, 66, 737.	0.7	32
92	The effectiveness of various rabies spatial vaccination patterns in a simulated host population with clumped distribution. Ecological Modelling, 2002, 152, 205-211.	1.2	10
93	Calcium oxalate crystals in leaves of Pancratium sickenbergeri : constitutive or induced defence?. Functional Ecology, 2002, 16, 99-105.	1.7	61
94	Responses of Pancratium sickenbergeri to simulated bulb herbivory: combining defence and tolerance strategies. Journal of Ecology, 2002, 90, 472-479.	1.9	31
95	Progeny sex ratio variation in ungulates: maternal age meets environmental perturbation of demograpgy. Oikos, 2001, 94, 377-384.	1.2	36
96	Characterizing Core and Corridor Use by Nubian Ibex in the Negev Desert, Israel. Conservation Biology, 2000, 14, 200-206.	2.4	20
97	The Effect of Spaceâ€Use Patterns of Reintroduced Asiatic Wild Ass on Effective Population Size. Conservation Biology, 2000, 14, 1852-1861.	2.4	32
98	Responding to a three-pronged attack: desert lilies subject to herbivory by dorcas gazelles. Plant Ecology, 2000, 148, 127-138.	0.7	41
99	Title is missing!. Plant Ecology, 2000, 150, 27-36.	0.7	25
100	Two-phase flow analysis of unstable fluid mixing in one-dimensional geometry. Physics of Fluids, 2000, 12, 2461.	1.6	10
101	The Effect of Space-Use Patterns of Reintroduced Asiatic Wild Ass on Effective Population Size. Conservation Biology, 2000, 14, 1852-1861.	2.4	27
102	Boundary conditions for a two pressure two-phase flow model. Physica D: Nonlinear Phenomena, 1999, 133, 84-105.	1.3	27
103	Effects of grazing by reâ€introduced Equus hemionus on the vegetation in a Negev desert erosion cirque. Journal of Vegetation Science, 1999, 10, 579-586.	1.1	10
104	Assessing Grazing Impacts by Remote Sensing in Hyper-Arid Environments. Journal of Range Management, 1999, 52, 500.	0.3	37
105	Two-phase modelling of a fluid mixing layer. Journal of Fluid Mechanics, 1999, 378, 119-143.	1.4	57
106	A long-term systematic approach to planning reintroductions: the Persian fallow deer and the Arabian oryx in Israel. Animal Conservation, 1998, 1, 245-252.	1.5	38
107	Statistical Evolution of Chaotic Fluid Mixing. Physical Review Letters, 1998, 80, 712-715.	2.9	36
108	TWO-PRESSURE TWO-PHASE FLOW. , 1998, , 124-148.		13

#	Article	IF	CITATIONS
109	A long-term systematic approach to planning reintroductions: the Persian fallow deer and the Arabian oryx in Israel., 1998, 1, 245.		2
110	Gazelle Herbivory and Interpopulation Differences in Calcium Oxalate Content of Leaves of a Desert Lily. Journal of Chemical Ecology, 1997, 23, 333-346.	0.9	67
111	Minimizing extinction probability due to demographic stochasticity in a reintroduced herd of Persian fallow deer Dama dama mesopotamica. Biological Conservation, 1996, 75, 27-33.	1.9	26
112	Population Dynamics of a Reintroduced Asiatic Wild Ass (Equus Hemionus) Herd., 1995, 5, 327-335.		109
113	Forging at Different Spatial Scales: Dorcas Gazelles Foraging for Lilies in the Negev Desert. Ecology, 1994, 75, 48-58.	1.5	126
114	Using the noninteracting cluster theory to predict the properties of real vapor. Journal of Chemical Physics, 1994, 101, 6038-6051.	1.2	13
115	Reporting Error Measures in Radio Location by Triangulation: A Review. Journal of Wildlife Management, 1994, 58, 181.	0.7	78
116	Effect of Time and Snow Dilution on Cortisol: Creatinine Ratios in Mule Deer Urine. Journal of Wildlife Management, 1993, 57, 397.	0.7	4
117	Urinary Cortisol, Urea Nitrogen Excretion, and Winter Survival in Mule Deer Fawns. Journal of Wildlife Management, 1992, 56, 640.	0.7	12
118	URINARY CORTISOL AND UREA NITROGEN RESPONSES IN IRREVERSIBLY UNDERNOURISHED MULE DEER FAWNS. Journal of Wildlife Diseases, 1991, 27, 41-46.	0.3	16
119	Urinary Cortisol and Urea Nitrogen Responses to Winter Stress in Mule Deer. Journal of Wildlife Management, 1991, 55, 1.	0.7	54
120	Comparison of Different Measures of the Error in Simulated Radio-Telemetry Locations. Journal of Wildlife Management, 1990, 54, 169.	0.7	16
121	On the spatial behaviour of Indian crested porcupines (<i>Hystrix indica)</i> . Journal of Zoology, 1989, 217, 255-266.	0.8	18
122	Influence of Season and Moonlight on Temporal-Activity Patterns of Indian Crested Porcupines (Hystrix indica). Journal of Mammalogy, 1988, 69, 71-80.	0.6	52
123	Foraging Time and the Northern Range Limits of Indian Crested Porcupines (Hystrix indica Kerr). Journal of Biogeography, 1988, 15, 403.	1.4	25
124	Potatoes and the Nutritional Ecology of Crested Porcupines in a Desert Biome. Journal of Applied Ecology, 1985, 22, 727.	1.9	23
125	A Simple Computer-Aided Method for Estimating Radio-Location Error. Journal of Wildlife Management, 1985, 49, 664.	0.7	27
126	Patterns of crested porcupine (Hystrix indica) damage to cultivated potatoes. Agriculture, Ecosystems and Environment, 1985, 14, 171-183.	2.5	15

#	Article	IF	CITATIONS
127	Indirect behavioral indicators and their uses in conservation and management., 0,, 352-375.		O
128	Evolution and conservation behavior., 0,, 36-65.		0
129	Anthropogenic impacts on animal behavior and their implications for conservation and management., 0, , 93-94.		O
130	Behavior-based contributions to reserve design and management. , 0, , 176-211.		1