Ivan Cibulka

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/5953604/publications.pdf
Version: 2024-02-01

High-Pressure Volumetric Properties of Imidazolium-Based Ionic Liquids:â€\%o Effect of the Anion. Journal

6 A new design of a vibrating-tube densimeter and partial molar volumes of phenol(aq) at temperatures
from 298 K to 573 K . Journal of Chemical Thermodynamics, 1997, 29, 1237-1252.

Pâ^^|lâ^’T Data of Liquids:â€\%o Summarization and Evaluation. 5. Aromatic Hydrocarbons. Journal of Chemical
7 \& Engineering Data, 1999, 44, 411-429.

8 Speed of Sound and Ultrasound Absorption in Ionic Liquids. Chemical Reviews, 2017, 117, 3883-3929.
23.0

63

Partial molar volumes of organic solutes in water. XII. Methanol(aq), ethanol(aq), 1-propanol(aq), and
9 2-propanol(aq) at $\mathrm{T}=(298$ to 573$) \mathrm{K}$ and at pressures up to 30 MPa . Journal of Chemical Thermodynamics,
1.0

52
2004, 36, 1095-1103.

PVT properties of liquids and liquid mixtures: a review of the experimental methods and the literature data. Fluid Phase Equilibria, 1985, 19, 33-149.
1.4

48
Pâ^lîan’TData of Liquids:Â Summarization and Evaluation. 4. Higher 1-Alkanols (C11, C12, C14, C16), Secondary,
11 Tertiary, and Branched Alkanols, Cycloalkanols, Alkanediols, Alkanetriols, Ether Alkanols, and
Aromatic Hydroxy Derivatives. Journal of Chemical \& Engineering Data, 1997, 42, 415-433.
12 Pâ^’Îâ^TData of Liquids:â€\%o Summarization and Evaluation. 8. Miscellaneous Compounds. Journal of Chemical \& Engineering Data, 2002, 47, 1037-1070.
1.0

47

Partial molar volumes of organic solutes in water. XIV. Polyhydric alcohols derived from ethane and
13 propane at temperatures $\mathrm{T}=298 \mathrm{~K}$ to $\mathrm{T}=573 \mathrm{~K}$ and at pressures up to 30MPa. Journal of Chemical
1.0

42
Thermodynamics, 2006, 38, 801-809.

Pâ^’ï̂̂^’T Data of Liquids:â€\%s Summarization and Evaluation. 7. Selected Halogenated Hydrocarbons. Journal of Chemical \& Engineering Data, 2001, 46, 2-28.
1.0

34

An Automated Vibrating-Tube Densimeter for Measurements of Small Density Differences in Dilute
Aqueous Solutions. International Journal of Thermophysics, 2004, 25, 1135-1142.
1.0

33

Partial molar volumes of organic solutes in water. XIII. Butanols (aq) at temperatures T=298K to 573 K and at pressures up to 30MPa. Journal of Chemical Thermodynamics, 2006, 38, 418-426.
19
20

Partial molar volumes of organic solutes in water. I.O-,m-, andp-cresol at temperatures 298 K to 573 K . Journal of Chemical Thermodynamics, 1998, 30, 557-569.

Partial molar volumes of organic solutes in water. II. Dihydroxybenzenes at temperaturesT=(298 to) Tj ETQq0 00 rgBT /Overlock 10 Tf 5

21	Pâ^lîâ^TData of Liquids:Â Summarization and Evaluation. 3. Ethers, Ketones, Aldehydes, Carboxylic Acids and Esters. Journal of Chemical \& Engineering Data, 1997, 42, 2-26.	1.0	24
22	Partial Molar Volumes of I-Serine and I-Threonine in Aqueous Ammonium Sulfate Solutions at (278.15,) Tj ETQq0 0 8.8.8BT /Overlock 10		
23	Partial molar volumes of air-component gases in binary liquid mixtures with n-alkanes and 1 -alkanols at 298.15 K. Fluid Phase Equilibria, 1995, 107, 235-255.	1.4	23
24	Partial molar volumes of organic solutes in water. VI.o-Chlorophenol andp-chlorophenol at temperatures from 298 K to 573 K and pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2001, 33, 1049-1057.	1.0	23
25	Partial molar volumes of organic solutes in water. XXI: Cyclic ethers at temperatures $\mathrm{T}=(278$ to 373$) \mathrm{K}$ and at low pressure. Journal of Chemical Thermodynamics, 2010, 42, 274-285.	1.0	23
26	Partial Molar Isentropic Compressions and Partial Molar Volumes of Selected Branched Aliphatic Alcohols at Infinite Dilution in Water at Temperatures from $T=(278$ to 318$) \mathrm{K}$ and Atmospheric Pressure. Journal of Chemical \& Engineering Data, 2012, 57, 1570-1580.	1.0	23
27	Partial molar volumes of organic solutes in water. IV. Benzoic and hydroxybenzoic acids at temperatures fromT $=298 \mathrm{~K}$ toT= 498 K and pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2000, 32, 1299-1310.	1.0	22

28 Partial molar volumes of organic solutes in water. X. Benzene and toluene at temperatures from (298) Tj ETQq0 00_{1} rgBT $/ \mathrm{Ov}_{2} \mathrm{~V}_{2}$ ock 10 T

29	Partial Molar Volumes and Partial Molar Isentropic Compressions of Three Polyhydric Alcohols Derived from Propane at Infinite Dilution in Water at Temperatures $T=(278$ to 318$) \mathrm{K}$ and Atmospheric Pressure. Journal of Chemical \& Engineering Data, 2012, 57, 1152-1159.	1.0	22
30	Partial molar volumes of organic solutes in water. III. Aniline at temperaturesT=298 K to $=573 \mathrm{~K}$ and pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2000, 32, 1221-1227.	1.0	21
31	Partial molar volumes of organic solutes in water. XXII. Cyclic ethers at temperatures (298 to 573) K and pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2010, 42, 502-512.	1.0	21
32	Measurements of the excess volume of benzene-methanol, benzene-acetonitrile and methanol-acetonitrile mixtures by a vibrating-tube densimeter. Collection of Czechoslovak Chemical Communications, 1979, 44, 295-306.	1.0	21
33	Standard partial molar volumes in water of mono- and polyhydric aliphatic alcohols in wide ranges of temperature and pressure. Journal of Molecular Liquids, 2007, 131-132, 206-215.	2.3	20
34	Thermodynamics of associating component + saturated hydrocarbon mixtures at low pressuresâ€"IV. Correlation of vapour pressures and volumetric properties of some aliphatic amines and their mixtures with n-alkanes in terms of association. Fluid Phase Equilibria, 1988, 39, 39-51.	1.4	19
35	Partial molar volumes of organic solutes in water. XV. Butanediols(aq) at temperatures from (298 K to) Tj	1.0	gB

Partial Molar Volumes and Partial Molar Isentropic Compressions of Selected Alkane-Î̀,Ï\%o-diols at Infinite

37	Group contribution method for standard molar volumes of aqueous aliphatic alcohols, ethers and ketones over extended ranges of temperature and pressure. Journal of Chemical Thermodynamics, 2011, 43, 1215-1223.	1.0	17
38	Partial molar volumes of organic solutes in water. V.o-,m-, andp-toluidine at temperatures from 298 K to 573 K and pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2000, 32, 1657-1668.	1.0	16
39	(Vapour + liquid) equilibria, limiting activity coefficients, and excess molar volumes of \{1-bromo-1-chloro-2,2,2-trifluoroethane (halothane) + tetrachloromethane or trichloromethane or 1,1,1-trichloroethane\}. Journal of Chemical Thermodynamics, 1987, 19, 1145-1154.	1.0	14
40	Partial molar volumes of organic solutes in water. VII. o- and p-Aminobenzoic acids at T=298 K to 498 K and o-diaminobenzene atT=298 K to 573 K and pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2002, 34, 861-873.	1.0	14
41	Partial molar volumes of organic solutes in water. XVI. Selected aliphatic hydroxyderivatives(aq) at $\mathrm{T}=(298$ to 573$) \mathrm{K}$ and at pressures up to 30MPa. Journal of Chemical Thermodynamics, 2007, 39, 833-840.	1.0	14
42	Partial molar volumes of organic solutes in water. XVIII: Selected polyethers(aq) and 3,6-dioxa-1-heptanol(aq) at T=(298 to 573)K and at pressures up to 30MPa. Journal of Chemical Thermodynamics, 2007, 39, 1292-1299.	1.0	14
43	Partial Molar Volumes of Selected Aliphatic Alcohols at Infinite Dilution in Water at Temperatures <i> T<\|i> = (278 to 573) K and Pressures up to 30 MPa . Journal of Chemical \& Engineering Data, 2011, 56, 4564-4576.	1.0	14
44	Partial Molar Volumes of Clycine and dl-Alanine in Aqueous Ammonium Sulfate Solutions at 278.15, 288.15, 298.15 and 308.15ÂK. Journal of Solution Chemistry, 2014, 43, 972-988.	0.6	14
45	Partial Molar Volumes and Partial Molar Isentropic Compressions of Four Poly(ethylene glycols) at Infinite Dilution in Water at Temperatures T = (278 to 343) K and Atmospheric Pressure. Journal of Chemical \& Engineering Data, 2016, 61, 748-759.	1.0	14
46	Thermodynamics of associating component + saturated hydrocarbon mixtures at low pressures. I. Description of saturated vapour pressures and liquid molar volumes of pure n-alcohols in terms of association. Fluid Phase Equilibria, 1987, 35, 19-42.	1.4	12
47	Partial molar volumes of organic solutes in water. VIII. Nitrobenzene and nitrophenols at T=298 K to $\mathrm{T}=573 \mathrm{~K}$ and pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2003, 35, 1185-1197.	1.0	12

Excess volume of the benzene-methanol-acetonitrile ternary mixture at temperatures of 25 and $40 \hat{A}^{\circ} \mathrm{C}$
49 and correlation of its concentration dependence. Collection of Czechoslovak Chemical
$1.0 \quad 12$
Communications, 1980, 45, 3241-3248.
Excess molar volumes of binary mixtures of acetic acid and propionic acid with some members of
50 homologous series of alkanes. Collection of Czechoslovak Chemical Communications, 1991, 56, 736-744.
Thermodynamics of associating component + saturated hydrocarbon mixtures at low pressures. II.
51 Extension of the model to correlate isothermal vapourliquid equilibria and volumetric properties of
$1.4 \quad 11$
n-alcohol + n-alkane mixtures. Fluid Phase Equilibria, 1987, 35, 43-63.
Partial molar volumes of organic solutes in water. IX. m-Aminophenol and benzonitrile at
52 temperatures from 298 K to 573 K and o-cyanophenol at temperatures from 298 K to 498 K and at
$1.0 \quad 11$ pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2003, 35, 1199-1212.
53 Speed of sound in liquid tetrachloromethane and benzene at temperatures from 283.15 K to 333.15 K and pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2004, 36, 659-664.
55
Partial molar volumes of organic solutes in water. XIX. Cyclic alcohols(aq) at $\mathrm{T}=(298$ to 573$) \mathrm{K}$ and at pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2009, 41, 489-498.
1.0

10

Partial Molar Volumes and Partial Molar Isentropic Compressions of Four Aliphatic Linear Polyethers
56 at Infinite Dilution in Water at Temperatures $\langle\mathrm{i}\rangle \mathrm{T}\langle/ \mathrm{i}\rangle=(278$ to 343$) \mathrm{K}$ and Atmospheric Pressure.
1.0

10
Journal of Chemical \& Engineering Data, 2014, 59, 4205-4216.
$\begin{array}{ll}\text { Partial Molar Volumes and Partial Molar Isentropic Compressions of 15-Crown-5 and 18-Crown-6 } \\ 57 & \text { Ethers at Infinite Dilution in Water at Temperatures }\langle\mathrm{i}\rangle \mathrm{T}\langle/ \mathrm{i}\rangle=(278 \text { to } 343) \mathrm{K} \text { and Atmospheric } \\ \text { Journal of Chemical \& Engineering Data, 2014, 59, 2075-2086. } \\ & \text { Partial Molar Volumes and Partial Molar Isentropic Compressions of Four 2-Alkoxyethanols at } \\ 58 & \text { Infinite Dilution in Water at Temperatures }\langle\mathrm{i}\rangle \mathrm{T}\langle\mathrm{i}\rangle=278 \mathrm{~A} €^{\prime \prime} 343 \mathrm{~K} \text { and Atmospheric Pressure. }\end{array}$ Chemical \& Engineering Data, 2017, 62, 2649-2658.
Densities of $\mathrm{NaOH}(\mathrm{aq})$ at Temperatures from (323 to 573) K and 10 MPa Pressure. Journal of Chemical
\& Engineering Data, 2007, 52, 2237-2244.
$1.0 \quad 9$

60 A dilution dilatomer for measuring excess volumes. Collection of Czechoslovak Chemical
Communications, 1981, 46, 2774-2781.
$1.0 \quad 9$
Speeds of Sound in Dense Liquid and Vapor Pressures for 1,1-Difluoroethane. Journal of Chemical
\& Engineering Data, 2004, 49, 1652-1656.

Densities of Concentrated Alkaline Aluminate Solutions at Temperatures from (323 to 573) K and 10 MPa
Pressure. Journal of Chemical \& Engineering Data, 2010, 55, 1173-1178.
Partial Molar Isentropic Compressions and Partial Molar Volumes of Isomeric Butanediols at Infinite
63 Dilution in Water at Temperatures $\langle\mathrm{i}\rangle \mathrm{T}<|\mathrm{i}\rangle=(278$ to 318$) \mathrm{K}$ and Atmospheric Pressure. Journal of
1.08

Chemical \& Engineering Data, 2013, 58, 388-397.
On a temperature dependence of the van der Waals volume parameter in cubic equations of state.
Fluid Phase Equilibria, 1990, 60, 327-332.
1.4

7

$$
65 \quad \text { Partial molar volumes of air-component gases in several liquid n-alkanes and 1-alkanols at } 313.15 \mathrm{~K} \text {. }
$$

Fluid Phase Equilibria, 1995, 109, 227-234.

Partial molar volumes of organic solutes in water. XVII: 3-Pentanone(aq) and 2,4-pentanedione(aq) at
$\mathrm{T}=(298$ to 573$) \mathrm{K}$ and at pressures up to 30MPa. Journal of Chemical Thermodynamics, 2007, 39, 1286-1291.
1.0

7

Partial Molar Volumes of Cyclic Alcohols at Infinite Dilution in Water at Temperatures T = (298 to 373)
K and Pressure of 0.5 MPa. Journal of Chemical \& Engineering Data, 2009, 54, 459-463.

Partial molar volumes of organic solutes in water. XXIII. Cyclic ketones at $\mathrm{T}=(298$ to 573$) \mathrm{K}$ and pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2011, 43, 1028-1035.
1.0

7

Speed of Sound in Binary Mixtures of Pentafluoroethane and 1,1-Difluoroethane from 243.15 K to 333.15
K and Pressures up to 30 MPa. Journal of Chemical \& Engineering Data, 2004, 49, 1657-1660.
1.0

Partial Molar Volumes of Cyclic Ketones at Infinite Dilution in Water at Temperatures <i> T</i>=(278) Tj ETQq0 00_{1} rgBT $/$ Ovegrlock 10 T
$\mathrm{T}=298 \mathrm{~K}$ to 573 K and pressures up to 30MPa. Journal of Chemical Thermodynamics, 2013, 64, 231-238.
73

Partial molar volumes of organic solutes in water. XXVII. Two aliphatic polyethers (triglyme,) Tj ETQq1 10.784314 rgBT /Overlock 10
Thermodynamics, 2016, 101, 78-83.
Partial molar volumes of organic solutes in water. XXVIII. Three aliphatic poly(ethylene glycols) at
74 temperatures $\mathrm{T}=298 \mathrm{Kâ} €^{\prime \prime} 573 \mathrm{~K}$ and pressures up to 30 MPa . Journal of Chemical Thermodynamics, 2017 , $\quad 1.0$ 109, 2-10.

75 Computation and volumetric insight into (p, T) effect on aqueous guanidinium chloride. Journal of
$1.0 \quad 5$ Chemical Thermodynamics, 2021, 158, 106450.

Evaluation of the dependence of excess volume of the benzene-cyclohexane mixture on composition at 76 298.15 K from literature data. Collection of Czechoslovak Chemical Communications, 1983, 48, 199-202.
$1.0 \quad 4$
A relation between excess volume and the form of the dependence of density on composition for
binary liquid mixtures. Collection of Czechoslovak Chemical Communications, 1990, 55, 1653-165
$1.0 \quad 4$
binary liquid mixtures. Collection of Czechoslovak Chemical Communications, 1990, 55, 1653-1659.

Excess Volumes of 1,4-Dioxane + Ethane-1,2-diol at 298.15 K. Journal of Chemical \& Engineering Data, 1995, 40, 974-975.
1.0

3
79 A simple method for evaluation of parameters of the Bender equation of state from experimental data. Fluid Phase Equilibria, 2001, 180, 27-40.1.43
Partial Molar Volumes and Partial Molar Isentropic Compressions of î3-Butyrolactone and$80 \quad \hat{l} \mu$-Caprolactone at Infinite Dilution in Water at Temperatures (278.15 to 318.15) K and at Atmospheric0.63
Pressure. Journal of Solution Chemistry, 2011, 40, 751-763.
Thermodynamics of associating component + saturated hydrocarbon mixtures at low pressures. III.81 Vapourliquid equilibria and volumetric properties of n-alcohol + cyclohexane mixtures. Fluid Phase1.4Equilibria, 1987, 35, 65-75.
Partial molar volumes of organic solutes in water. XXVI. 15-Crown-5 and 18-crown-6 ethers attemperatures (298 to 573)K and pressures up to 30MPa. Journal of Chemical Thermodynamics, 2015, 80,41-48.
83 Partial molar volumes of organic solutes in water. XXIX. Four 2-alkoxyethanols at temperatures Tâ€ $€^{-}=\hat{€^{-}}\left(298 a ̂ €^{-} K\right.$ to 573$) a ̂ €^{-} K$ and pressures up to $30 a ̂ €^{-} M P a$. Journal of Chemical Thermodynamics, 2018, 125, 240 110-249.2

Partial molar volumes of organic solutes in water. XXV. Branched aliphatic diols at temperatures (298) Tj ETQq0 00 rgBT /Overlock 10 T

Partial Molar Volumes and Partial Molar Isentropic Compressions of Two Poly(ethylene glycol)
92 Monoalkyl Ethers, C4E2 and C1E3, at Infinite Dilution in Water at Temperatures $T=278$ ấ" 343 K and

