## Michael J Benedik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5953549/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Xenogeneic silencing relies on temperature-dependent phosphorylation of the host H-NS protein in<br><i>Shewanella</i> . Nucleic Acids Research, 2021, 49, 3427-3440.                                                 | 6.5 | 11        |
| 2  | <i>Escherichia coli</i> cryptic prophages sense nutrients to influence persister cell resuscitation.<br>Environmental Microbiology, 2021, 23, 7245-7254.                                                             | 1.8 | 9         |
| 3  | Persister Cells Resuscitate Using Membrane Sensors that Activate Chemotaxis, Lower cAMP Levels, and<br>Revive Ribosomes. IScience, 2020, 23, 100792.                                                                 | 1.9 | 56        |
| 4  | Cyanide-degrading nitrilases in nature. Journal of General and Applied Microbiology, 2018, 64, 90-93.                                                                                                                | 0.4 | 9         |
| 5  | Cyanide bioremediation: the potential of engineered nitrilases. Applied Microbiology and Biotechnology, 2017, 101, 3029-3042.                                                                                        | 1.7 | 53        |
| 6  | Bacillus pumilus Cyanide Dihydratase Mutants with Higher Catalytic Activity. Frontiers in<br>Microbiology, 2016, 7, 1264.                                                                                            | 1.5 | 14        |
| 7  | Residue Y70 of the Nitrilase Cyanide Dihydratase from Bacillus pumilus Is Critical for Formation and Activity of the Spiral Oligomer. Journal of Microbiology and Biotechnology, 2016, 26, 2179-2183.                | 0.9 | 3         |
| 8  | Catabolic plasmid specifying polychlorinated biphenyl degradation in <i>Cupriavidus</i> sp. strain SKâ€4:<br>Mobilization and expression in a pseudomonad. Journal of Basic Microbiology, 2015, 55, 338-345.         | 1.8 | 5         |
| 9  | Orphan Toxin OrtT (YdcX) of Escherichia coli Reduces Growth during the Stringent Response. Toxins, 2015, 7, 299-321.                                                                                                 | 1.5 | 23        |
| 10 | Probing C-terminal interactions of the Pseudomonas stutzeri cyanide-degrading CynD protein. Applied<br>Microbiology and Biotechnology, 2015, 99, 3093-3102.                                                          | 1.7 | 14        |
| 11 | C-terminal hybrid mutant of Bacillus pumilus cyanide dihydratase dramatically enhances thermal<br>stability and pH tolerance by reinforcing oligomerization. Journal of Applied Microbiology, 2015, 118,<br>881-889. | 1.4 | 14        |
| 12 | The <scp>MqsR</scp> / <scp>MqsA</scp> toxin/antitoxin system protects<br><scp><i>E</i></scp> <i>scherichia coli</i> during bile acid stress. Environmental Microbiology, 2015,<br>17, 3168-3181.                     | 1.8 | 55        |
| 13 | Toxin <scp>YafQ</scp> increases persister cell formation by reducing indole signalling.<br>Environmental Microbiology, 2015, 17, 1275-1285.                                                                          | 1.8 | 88        |
| 14 | Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole.<br>Biotechnology and Bioengineering, 2015, 112, 588-600.                                                              | 1.7 | 75        |
| 15 | Probing an Interfacial Surface in the Cyanide Dihydratase from Bacillus pumilus, A Spiral Forming<br>Nitrilase. Frontiers in Microbiology, 2015, 6, 1479.                                                            | 1.5 | 8         |
| 16 | RalR (a DNase) and RalA (a small RNA) form a type I toxin–antitoxin system in Escherichia coli. Nucleic<br>Acids Research, 2014, 42, 6448-6462.                                                                      | 6.5 | 98        |
| 17 | Interactions of the TnaC nascent peptide with rRNA in the exit tunnel enable the ribosome to respond to free tryptophan. Nucleic Acids Research, 2014, 42, 1245-1256.                                                | 6.5 | 41        |
| 18 | Draft Genome Sequence of Cupriavidus sp. Strain SK-4, a di- ortho -Substituted Biphenyl-Utilizing<br>Bacterium Isolated from Polychlorinated Biphenyl-Contaminated Sludge. Genome Announcements,<br>2014, 2, .       | 0.8 | 3         |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Draft Genome Sequence of <i>Cupriavidus</i> sp. Strain SK-3, a 4-Chlorobiphenyl- and 4-Clorobenzoic<br>Acid-Degrading Bacterium. Genome Announcements, 2014, 2, .                                                                    | 0.8 | 2         |
| 20 | Toxin <scp>GhoT</scp> of the <scp>GhoT</scp> / <scp>GhoS</scp> toxin/antitoxin system damages the cell membrane to reduce adenosine triphosphate and to reduce growth under stress. Environmental Microbiology, 2014, 16, 1741-1754. | 1.8 | 79        |
| 21 | Arrested Protein Synthesis Increases Persister-Like Cell Formation. Antimicrobial Agents and Chemotherapy, 2013, 57, 1468-1473.                                                                                                      | 1.4 | 286       |
| 22 | Type <scp>II</scp> toxin/antitoxin <scp>MqsR</scp> / <scp>MqsA</scp> controls type <scp>V</scp> toxin/antitoxin <scp>GhoT</scp> GhoS. Environmental Microbiology, 2013, 15, 1734-1744.                                               | 1.8 | 100       |
| 23 | Crucial elements that maintain the interactions between the regulatory TnaC peptide and the<br>ribosome exit tunnel responsible for Trp inhibition of ribosome function. Nucleic Acids Research,<br>2012, 40, 2247-2257.             | 6.5 | 17        |
| 24 | Draft Genome Sequence of the Cyanide-Utilizing Bacterium Pseudomonas fluorescens Strain NCIMB<br>11764. Journal of Bacteriology, 2012, 194, 6618-6619.                                                                               | 1.0 | 9         |
| 25 | A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nature<br>Chemical Biology, 2012, 8, 855-861.                                                                                            | 3.9 | 268       |
| 26 | Engineering pH-tolerant mutants of a cyanide dihydratase. Applied Microbiology and Biotechnology, 2012, 94, 131-140.                                                                                                                 | 1.7 | 15        |
| 27 | Bacterial persistence increases as environmental fitness decreases. Microbial Biotechnology, 2012, 5, 509-522.                                                                                                                       | 2.0 | 137       |
| 28 | Antitoxin DinJ influences the general stress response through transcript stabilizer CspE.<br>Environmental Microbiology, 2012, 14, 669-679.                                                                                          | 1.8 | 68        |
| 29 | Antitoxin MqsA helps mediate the bacterial general stress response. Nature Chemical Biology, 2011, 7, 359-366.                                                                                                                       | 3.9 | 201       |
| 30 | Rapid generation of random mutant libraries. Bioengineered Bugs, 2010, 1, 337-340.                                                                                                                                                   | 2.0 | 13        |
| 31 | The cyanide hydratase from Neurospora crassa forms a helix which has a dimeric repeat. Applied Microbiology and Biotechnology, 2009, 82, 271-278.                                                                                    | 1.7 | 18        |
| 32 | Crystallization and preliminary X-ray study of alkaline alanine racemase from <i>Bacillus<br/>pseudofirmus</i> OF4. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65,<br>166-168.                       | 0.7 | 4         |
| 33 | Microbial nitrilases: versatile, spiral forming, industrial enzymes. Journal of Applied Microbiology, 2009, 106, 703-727.                                                                                                            | 1.4 | 131       |
| 34 | Antimicrobial Behavior of Polyelectrolyteâ^'Surfactant Thin Film Assemblies. Langmuir, 2009, 25, 10322-10328.                                                                                                                        | 1.6 | 79        |
| 35 | Genome mining of cyanide-degrading nitrilases from filamentous fungi. Applied Microbiology and<br>Biotechnology, 2008, 80, 427-35.                                                                                                   | 1.7 | 44        |
| 36 | Helical structure of unidirectionally shadowed metal replicas of cyanide hydratase from<br>Gloeocercospora sorghi. Journal of Structural Biology, 2008, 161, 111-119.                                                                | 1.3 | 20        |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Purification and preliminary crystallization of alanine racemase from Streptococcus pneumoniae.<br>BMC Microbiology, 2007, 7, 40.                                                                               | 1.3 | 21        |
| 38 | Oligomeric Structure of Nitrilases: Effect of Mutating Interfacial Residues on Activity. Annals of the<br>New York Academy of Sciences, 2005, 1056, 153-159.                                                    | 1.8 | 21        |
| 39 | Comparison of cyanide-degrading nitrilases. Applied Microbiology and Biotechnology, 2005, 68, 327-335.                                                                                                          | 1.7 | 44        |
| 40 | Nonlinear dielectric spectroscopy of live cells using superconducting quantum interference devices.<br>Applied Physics Letters, 2005, 86, 023902.                                                               | 1.5 | 18        |
| 41 | The 1.9 Ã Crystal Structure of Alanine Racemase from Mycobacterium tuberculosis Contains a Conserved Entryway into the Active Site,. Biochemistry, 2005, 44, 1471-1481.                                         | 1.2 | 86        |
| 42 | Low-frequency, low-field dielectric spectroscopy of living cell suspensions. Journal of Applied Physics, 2004, 95, 3754-3756.                                                                                   | 1.1 | 67        |
| 43 | Recombinant carbazole-degrading strains for enhanced petroleum processing. Journal of Industrial<br>Microbiology and Biotechnology, 2003, 30, 6-12.                                                             | 1.4 | 32        |
| 44 | The Cyanide Degrading Nitrilase from Pseudomonas stutzeri AK61 Is a Two-Fold Symmetric, 14-Subunit<br>Spiral. Structure, 2003, 11, 1413-1422.                                                                   | 1.6 | 47        |
| 45 | CynD, the Cyanide Dihydratase from Bacillus pumilus: Gene Cloning and Structural Studies. Applied and Environmental Microbiology, 2003, 69, 4794-4805.                                                          | 1.4 | 65        |
| 46 | Crystal Structure at 1.45 Ã Resolution of Alanine Racemase from a Pathogenic Bacterium,<br>Pseudomonas aeruginosa, Contains Both Internal and External Aldimine Forms,. Biochemistry, 2003,<br>42, 14752-14761. | 1.2 | 44        |
| 47 | Purification and properties of 2-hydroxy-6-oxo-6-(2′-aminophenyl)hexa-2,4-dienoic acid hydrolase<br>involved in microbial degradation of carbazole. Protein Expression and Purification, 2003, 28, 182-189.     | 0.6 | 13        |
| 48 | Purification and characterization of 2′aminobiphenyl-2,3-diol 1,2-dioxygenase from Pseudomonas sp.<br>LD2. Protein Expression and Purification, 2003, 32, 35-43.                                                | 0.6 | 6         |
| 49 | Cadaverine Inhibition of Porin Plays a Role in Cell Survival at Acidic pH. Journal of Bacteriology, 2003, 185, 13-19.                                                                                           | 1.0 | 95        |
| 50 | N(2)-Substituted D,L-Cycloserine Derivatives: Synthesis and Evaluation as Alanine Racemase Inhibitors<br>Journal of Antibiotics, 2003, 56, 160-168.                                                             | 1.0 | 24        |
| 51 | Characterization of a Cytotoxic Factor in Culture Filtrates of Serratia marcescens. Infection and Immunity, 2002, 70, 1121-1128.                                                                                | 1.0 | 50        |
| 52 | Mutant Analysis Shows that Alanine Racemases from Pseudomonas aeruginosa and Escherichia coli<br>Are Dimeric. Journal of Bacteriology, 2002, 184, 4321-4325.                                                    | 1.0 | 42        |
| 53 | Multi-Copy Repression of Serratia marcescens Nuclease Expression by dinl. Current Microbiology, 2002, 44, 44-48.                                                                                                | 1.0 | 3         |
| 54 | Study of the mechanism of action of p-chloromercuribenzoate on endonuclease from the bacterium Serratia marcescens. Biochemistry (Moscow), 2001, 66, 323-327.                                                   | 0.7 | 5         |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Characterization of the alanine racemases from two Mycobacteria. FEMS Microbiology Letters, 2001, 196, 93-98.                                                                                          | 0.7 | 88        |
| 56 | Characterization of the Alanine Racemases from Pseudomonas aeruginosa PAO1. Current Microbiology, 2000, 41, 290-294.                                                                                   | 1.0 | 56        |
| 57 | The NucE and NucD lysis proteins are not essential for secretion of the Serratia marcescens extracellular nuclease. Microbiology (United Kingdom), 1999, 145, 1209-1216.                               | 0.7 | 3         |
| 58 | Temperature- and solvent-tolerant mutants of filamentous bacteriophage helper M13 KO7.<br>Biotechnology Letters, 1999, 21, 87-90.                                                                      | 1.1 | 3         |
| 59 | A New Member of the Sin3 Family of Corepressors Is Essential for Cell Viability and Required for Retroelement Propagation in Fission Yeast. Molecular and Cellular Biology, 1999, 19, 2351-2365.       | 1.1 | 31        |
| 60 | Nup124p Is a Nuclear Pore Factor of <i>Schizosaccharomyces pombe</i> That Is Important for Nuclear<br>Import and Activity of Retrotransposon Tf1. Molecular and Cellular Biology, 1999, 19, 5768-5784. | 1.1 | 43        |
| 61 | Serratia marcescensand its extracellular nuclease. FEMS Microbiology Letters, 1998, 165, 1-13.                                                                                                         | 0.7 | 85        |
| 62 | Microbial denitrogenation of fossil fuels. Trends in Biotechnology, 1998, 16, 390-395.                                                                                                                 | 4.9 | 85        |
| 63 | Nuclease Overexpression Mutants of <i>Serratia marcescens</i> . Journal of Bacteriology, 1998, 180, 2262-2264.                                                                                         | 1.0 | 6         |
| 64 | Disruption of polyamine modulation by a single amino acid substitution on the L3 loop of the OmpC porin channel. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1326, 201-212.                    | 1.4 | 18        |
| 65 | Rapid Detection of Mutagens by Induction of Luciferase-Bearing Prophage inEscherichia coli.<br>Environmental Science & Technology, 1996, 30, 2478-2483.                                                | 4.6 | 6         |
| 66 | Inhibition of Serratia marcescens nuclease secretion by a truncated nuclease peptide. Gene, 1996, 172,<br>9-16.                                                                                        | 1.0 | 4         |
| 67 | Regulation of theSerratia marcescensExtracellular Nuclease: Positive Control by a Homolog of P2<br>Ogr Encoded by a Cryptic Prophage. Journal of Molecular Biology, 1996, 256, 264-278.                | 2.0 | 29        |
| 68 | Induction of phospholipase- and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon flhD. Molecular Microbiology, 1995, 15, 445-454.               | 1.2 | 96        |
| 69 | Bacteriophage Surface Display of an Immunoglobulin–binding Domain of Staphylococcus aureus<br>Protein A. Nature Biotechnology, 1994, 12, 169-172.                                                      | 9.4 | 24        |
| 70 | 2.1 Ã structure of Serratia endonuclease suggests a mechanism for binding to double-stranded DNA.<br>Nature Structural and Molecular Biology, 1994, 1, 461-468.                                        | 3.6 | 91        |
| 71 | Sequences of the Serratia marcescens rplS and trmD genes. Gene, 1994, 145, 147-148.                                                                                                                    | 1.0 | 2         |
| 72 | Disulfide bonds are required forSerratia marcescensnuclease activity. Nucleic Acids Research, 1992, 20, 4971-4974.                                                                                     | 6.5 | 36        |

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Regulatory mutants and transcriptional control of the Serratia marcescens extracellular nuclease gene. Molecular Microbiology, 1992, 6, 643-651.                                    | 1.2 | 30        |
| 74 | Crystallization and preliminary crystallographic analysis of a novel nuclease from Serratia marcescens. Journal of Molecular Biology, 1991, 222, 27-30.                             | 2.0 | 23        |
| 75 | The metalloprotease gene ofSerratia marcescens strain SM6. Molecular Genetics and Genomics, 1990, 222, 446-451.                                                                     | 2.4 | 47        |
| 76 | High efficiency transduction of single strand plasmid DNA into enteric bacteria. Molecular Genetics<br>and Genomics, 1989, 218, 353-354.                                            | 2.4 | 2         |
| 77 | Genetic analysis of extracellular proteins of Serratia marcescens. Journal of Bacteriology, 1988, 170, 4141-4146.                                                                   | 1.0 | 90        |
| 78 | The extracellular nuclease gene of Serratia marcescens and its secretion from Escherichia coli. Gene, 1987, 57, 183-192.                                                            | 1.0 | 106       |
| 79 | Activation of mouse T-helper cells induces abundant preproenkephalin mRNA synthesis. Science, 1986, 232, 772-775.                                                                   | 6.0 | 284       |
| 80 | DNA sequence of regulatory region for integration gene of bacteriophage Â. Proceedings of the<br>National Academy of Sciences of the United States of America, 1980, 77, 2477-2481. | 3.3 | 45        |
| 81 | Serratia marcescens and its extracellular nuclease. , 0, .                                                                                                                          |     | 2         |