
Sang Woo Seo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5953400/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Production of Naringin Acetate with Different Acyl Donors via Enzymatic Transesterification by Lipases. International Journal of Environmental Research and Public Health, 2022, 19, 2972.	1.2	6
2	A Vibrio-based microbial platform for accelerated lignocellulosic sugar conversion. , 2022, 15, .		6
3	Engineering Vibrio sp. SP1 for the production of carotenoids directly from brown macroalgae. Computational and Structural Biotechnology Journal, 2021, 19, 1531-1540.	1.9	8
4	Synthetic protein quality control to enhance full-length translation in bacteria. Nature Chemical Biology, 2021, 17, 421-427.	3.9	10
5	Synthetic biosensor accelerates evolution by rewiring carbon metabolism toward a specific metabolite. Cell Reports, 2021, 36, 109589.	2.9	18
6	Synthetic cellular communication-based screening for strains with improved 3-hydroxypropionic acid secretion. Lab on A Chip, 2021, 21, 4455-4463.	3.1	12
7	Engineering Tools for the Development of Recombinant Lactic Acid Bacteria. Biotechnology Journal, 2020, 15, e1900344.	1.8	22
8	Independent component analysis of E. coli's transcriptome reveals the cellular processes that respond to heterologous gene expression. Metabolic Engineering, 2020, 61, 360-368.	3.6	36
9	Nanoelectrokinetic Selective Preconcentration Based on Ion Concentration Polarization. Biochip Journal, 2020, 14, 100-109.	2.5	17
10	Transcriptional Profiling of the Probiotic Escherichia coli Nissle 1917 Strain under Simulated Microgravity. International Journal of Molecular Sciences, 2020, 21, 2666.	1.8	22
11	Fabrication of Troponin I Biosensor Composed of Multi-Functional DNA Structure/Au Nanocrystal Using Electrochemical and Localized Surface Plasmon Resonance Dual-Detection Method. Nanomaterials, 2019, 9, 1000.	1.9	30
12	Complete Genome Sequence of Lactic Acid Bacterium Pediococcus acidilactici Strain ATCC 8042, an Autolytic Anti-bacterial Peptidoglycan Hydrolase Producer. Biotechnology and Bioprocess Engineering, 2019, 24, 483-487.	1.4	5
13	Cellular responses to reactive oxygen species are predicted from molecular mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14368-14373.	3.3	79
14	Vibrio sp. dhg as a platform for the biorefinery of brown macroalgae. Nature Communications, 2019, 10, 2486.	5.8	44
15	Synthetic biology for evolutionary engineering: from perturbation of genotype to acquisition of desired phenotype. Biotechnology for Biofuels, 2019, 12, 113.	6.2	36
16	Synthetic Regulatory Tools to Engineer Microbial Cell Factories for Chemical Production. , 2019, , 115-141.		0
17	Systems assessment of transcriptional regulation on central carbon metabolism by Cra and CRP. Nucleic Acids Research, 2018, 46, 2901-2917.	6.5	62
18	Design and optimization of genetically encoded biosensors for high-throughput screening of chemicals. Current Opinion in Biotechnology, 2018, 54, 18-25.	3.3	72

SANG WOO SEO

#	Article	IF	CITATIONS
19	Diffusiophoretic exclusion of colloidal particles for continuous water purification. Lab on A Chip, 2018, 18, 1713-1724.	3.1	42
20	RNA-based dynamic genetic controllers: development strategies and applications. Current Opinion in Biotechnology, 2018, 53, 1-11.	3.3	37
21	dCas9-mediated Nanoelectrokinetic Direct Detection of Target Gene for Liquid Biopsy. Nano Letters, 2018, 18, 7642-7650.	4.5	50
22	Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655. Nucleic Acids Research, 2018, 46, 10682-10696.	6.5	65
23	Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number. Metabolic Engineering, 2018, 48, 121-128.	3.6	48
24	Elucidation of bacterial translation regulatory networks. Current Opinion in Systems Biology, 2017, 2, 84-90.	1.3	5
25	Revealing genome-scale transcriptional regulatory landscape of OmpR highlights its expanded regulatory roles under osmotic stress in Escherichia coli K-12 MG1655. Scientific Reports, 2017, 7, 2181.	1.6	35
26	Synthetic redesign of Escherichia coli for cadaverine production from galactose. Biotechnology for Biofuels, 2017, 10, 20.	6.2	34
27	Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli. Metabolic Engineering, 2017, 43, 1-8.	3.6	57
28	Pathway optimization by re-design of untranslated regions for L-tyrosine production in Escherichia coli. Scientific Reports, 2015, 5, 13853.	1.6	43
29	Riboselector. Methods in Enzymology, 2015, 550, 341-362.	0.4	17
30	Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655. Cell Reports, 2015, 12, 1289-1299.	2.9	174
31	Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli. Nature Communications, 2015, 6, 7970.	5.8	87
32	The synthesis of single-walled carbon nanotubes with narrow diameter distribution using polymerized hemoglobin. Carbon, 2014, 69, 588-594.	5.4	5
33	Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli. Nature Communications, 2014, 5, 4910.	5.8	241
34	Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels. Scientific Reports, 2014, 4, 4515.	1.6	59
35	Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nature Communications, 2013, 4, 1413.	5.8	140
36	Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metabolic Engineering, 2013, 20, 56-62.	3.6	60

SANG WOO SEO

#	Article	IF	CITATIONS
37	Refactoring redox cofactor regeneration for high-yield biocatalysis of glucose to butyric acid in Escherichia coli. Bioresource Technology, 2013, 135, 568-573.	4.8	36
38	Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metabolic Engineering, 2013, 15, 67-74.	3.6	240
39	Synthetic biology: Tools to design microbes for the production of chemicals and fuels. Biotechnology Advances, 2013, 31, 811-817.	6.0	56
40	Synthetic regulatory RNAs as tools for engineering biological systems: Design and applications. Chemical Engineering Science, 2013, 103, 36-41.	1.9	5
41	Engineered Escherichia coli for simultaneous utilization of galactose and glucose. Bioresource Technology, 2013, 135, 564-567.	4.8	32
42	Butyrate production in engineered <i>Escherichia coli</i> with synthetic scaffolds. Biotechnology and Bioengineering, 2013, 110, 2790-2794.	1.7	88
43	Rational Engineering of Enzyme Allosteric Regulation through Sequence Evolution Analysis. PLoS Computational Biology, 2012, 8, e1002612.	1.5	71
44	Synthetic regulatory tools for microbial engineering. Biotechnology and Bioprocess Engineering, 2012, 17, 1-7.	1.4	30
45	Switching control of an essential gene for reprogramming of cellular phenotypes in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2012, 109, 1875-1880.	1.7	4
46	Engineering glyceraldehydeâ€3â€phosphate dehydrogenase for switching control of glycolysis in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2012, 109, 2612-2619.	1.7	29
47	Easy access to efficient magnetically recyclable separation of histidine-tagged proteins using superparamagnetic nickel ferrite nanoparticle clusters. Journal of Materials Chemistry, 2011, 21, 6713.	6.7	32
48	A novel pathogen detection system based on highâ€resolution CEâ€SCP using a triblock copolymer matrix. Journal of Separation Science, 2010, 33, 1639-1643.	1.3	26
49	Quantitative correlation between mRNA secondary structure around the region downstream of the initiation codon and translational efficiency in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2009, 104, 611-616.	1.7	45
50	Design of 5â€2-untranslated region variants for tunable expression in Escherichia coli. Biochemical and Biophysical Research Communications, 2007, 356, 136-141.	1.0	31