
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5953392/publications.pdf Version: 2024-02-01

4

#	Article	IF	CITATIONS
1	Evaluating alternative variations of Negative Binomial–Lindley distribution for modelling crash data. Transportmetrica A: Transport Science, 2023, 19, .	2.0	8
2	Navigating to safety: Necessity, requirements, and barriers to considering safety in route finding. Transportation Research Part C: Emerging Technologies, 2022, 137, 103542.	7.6	4
3	Derivation of the Empirical Bayesian method for the Negative Binomial-Lindley generalized linear model with application in traffic safety. Accident Analysis and Prevention, 2022, 170, 106638.	5.7	12
4	A simulation analysis to study the temporal and spatial aggregations of safety datasets with excess zero observations. Transportmetrica A: Transport Science, 2021, 17, 1305-1317.	2.0	7
5	Comparison of confidence and prediction intervals for different mixed-Poisson regression models. Journal of Transportation Safety and Security, 2021, 13, 357-379.	1.6	5
6	Before–after studies in highway safety. , 2021, , 219-257.		0
7	Crash–frequency modeling. , 2021, , 59-101.		0
8	Data mining and machine learning techniques. , 2021, , 399-428.		3
9	Fundamentals and data collection. , 2021, , 17-57.		2
10	Investigating the safety and operational benefits of mixed traffic environments with different automated vehicle market penetration rates in the proximity of a driveway on an urban arterial. Accident Analysis and Prevention, 2021, 152, 105982.	5.7	46
11	Quantifying the automated vehicle safety performance: A scoping review of the literature, evaluation of methods, and directions for future research. Accident Analysis and Prevention, 2021, 152, 106003.	5.7	46
12	Examining driver distraction in the context of driving speed: An observational study using disruptive technology and naturalistic data. Accident Analysis and Prevention, 2021, 153, 105983.	5.7	20
13	A visual approach for defining the spatial relationships among crashes, crimes, and alcohol retailers: Applying the color mixing theorem to define the colocation pattern of multiple variables. Accident Analysis and Prevention, 2021, 154, 106062.	5.7	5
14	Application of different negative binomial parameterizations to develop safety performance functions for non-federal aid system roads. Accident Analysis and Prevention, 2021, 156, 106103.	5.7	18
15	The variability of urban safety performance functions for different road elements: an Italian case study. European Transport Research Review, 2021, 13, .	4.8	5
16	Toward a crowdsourcing solution to identify high-risk highway segments through mining driving jerks. Accident Analysis and Prevention, 2021, 155, 106101.	5.7	15
17	Identification of hazardous sites. , 2021, , 259-297.		0

18 Exploratory analyses of safety data. , 2021, , 135-177.

#	Article	IF	CITATIONS
19	Cross-sectional and panel studies in safety. , 2021, , 179-217.		Ο
20	Crash-severity modeling. , 2021, , 103-132.		0
21	Capacity, mobility, and safety. , 2021, , 335-365.		0
22	Use/Analysis of Crash Data and Underreporting of Crashes. , 2021, , 726-730.		1
23	Alcohol-impaired motorcyclists versus car drivers: A comparison of crash involvement and legal consequence from adjudication data. Journal of Safety Research, 2021, 79, 292-303.	3.6	4
24	Applying the colocation quotient index to crash severity analyses. Accident Analysis and Prevention, 2020, 135, 105368.	5.7	8
25	Impacts of Autonomous Vehicles on Public Health: A Conceptual Model and Policy Recommendations. Sustainable Cities and Society, 2020, 63, 102457.	10.4	51
26	Determining Skid Resistance Needs on Horizontal Curves for Different Levels of Precipitation. Transportation Research Record, 2020, 2674, 358-370.	1.9	7
27	Generalized criteria for evaluating hotspot identification methods. Accident Analysis and Prevention, 2020, 145, 105684.	5.7	9
28	Safety Performance of One-Way Arterials. Transportation Research Record, 2020, 2674, 548-559.	1.9	1
29	Can Autonomous Vehicles Enhance Traffic Safety at Unsignalized Intersections?. , 2020, , .		4
30	Analysis of crash injury severity on two trans-European transport network corridors in Spain using discrete-choice models and random forests. Traffic Injury Prevention, 2020, 21, 228-233.	1.4	14
31	Characteristics-based heuristics to select a logical distribution between the Poisson-gamma and the Poisson-lognormal for crash data modelling. Transportmetrica A: Transport Science, 2019, 15, 1791-1803.	2.0	11
32	Adjusting finite sample bias in traffic safety modeling. Accident Analysis and Prevention, 2019, 131, 112-121.	5.7	5
33	Impact of Urban Arterial Traffic LOS on the Vehicle Density of Different Lanes of the Arterial in Proximity of an Unsignalized Intersection for Autonomous Vehicle vs. Conventional Vehicle Environments. , 2019, , .		5
34	Examining Network Segmentation for Traffic Safety Analysis With Data-Driven Spectral Analysis. IEEE Access, 2019, 7, 120744-120757.	4.2	4
35	A promising example of smart policing: A cross-national study of the effectiveness of a data-driven approach to crime and traffic safety. Case Studies on Transport Policy, 2019, 7, 761-771.	2.5	9
36	Beauty or the Beast? Impacts of Autonomous Vehicles on Public Health. Journal of Transport and Health, 2019, 14, 100765.	2.2	3

DOMINIQUE LORD

#	Article	IF	CITATIONS
37	Effects of geometry and pavement friction on horizontal curve crash frequency. Journal of Transportation Safety and Security, 2019, 11, 167-188.	1.6	35
38	Developing a Random Parameters Negative Binomial-Lindley Model to analyze highly over-dispersed crash count data. Analytic Methods in Accident Research, 2018, 18, 33-44.	8.2	40
39	Chapter 14. Safety Prediction with Datasets Characterised with Excess Zero Responses and Long Tails. Transport and Sustainability, 2018, , 297-323.	0.4	4
40	Chapter 20. Conclusions and Future Directions. Transport and Sustainability, 2018, , 451-458.	0.4	0
41	Bayesian Poisson hierarchical models for crash data analysis: Investigating the impact of model choice on site-specific predictions. Accident Analysis and Prevention, 2018, 117, 181-195.	5.7	16
42	Empirical Bayes estimates of finite mixture of negative binomial regression models and its application to highway safety. Journal of Applied Statistics, 2018, 45, 1652-1669.	1.3	55
43	A semi-nonparametric Poisson regression model for analyzing motor vehicle crash data. PLoS ONE, 2018, 13, e0197338.	2.5	48
44	Crash data modeling with a generalized estimator. Accident Analysis and Prevention, 2018, 117, 340-345.	5.7	10
45	Examining the influence of link function misspecification in conventional regression models for developing crash modification factors. Accident Analysis and Prevention, 2017, 102, 123-135.	5.7	19
46	A methodology to design heuristics for model selection based on the characteristics of data: Application to investigate when the Negative Binomial Lindley (NB-L) is preferred over the Negative Binomial (NB). Accident Analysis and Prevention, 2017, 107, 186-194.	5.7	18
47	Exploring the Need for Region-Specific Calibration Factors. Transportation Research Record, 2017, 2636, 73-79.	1.9	9
48	Estimating the safety impacts in before–after studies using the NaÃ⁻ve Adjustment Method. Transportmetrica A: Transport Science, 2017, 13, 915-931.	2.0	9
49	A Monte-Carlo simulation analysis for evaluating the severity distribution functions (SDFs) calibration methodology and determining the minimum sample-size requirements. Accident Analysis and Prevention, 2017, 98, 303-311.	5.7	15
50	A procedure to determine when safety performance functions should be recalibrated. Journal of Transportation Safety and Security, 2017, 9, 457-469.	1.6	11
51	Developing Crash Modification Factors for Horizontal Curves on Rural Two-Lane Undivided Highways Using a Cross-Sectional Study. Transportation Research Record, 2017, 2636, 53-61.	1.9	12
52	Application of finite mixture models for analysing freeway incident clearance time. Transportmetrica A: Transport Science, 2016, 12, 99-115.	2.0	40
53	Multilevel Dirichlet process mixture analysis of railway grade crossing crash data. Analytic Methods in Accident Research, 2016, 9, 27-43.	8.2	30
54	A semiparametric negative binomial generalized linear model for modeling over-dispersed count data with a heavy tail: Characteristics and applications to crash data. Accident Analysis and Prevention, 2016, 91, 10-18.	5.7	46

#	Article	IF	CITATIONS
55	Finite mixture modeling approach for developing crash modification factors in highway safety analysis. Accident Analysis and Prevention, 2016, 97, 274-287.	5.7	27
56	Sample-size guidelines for recalibrating crash prediction models: Recommendations for the highway safety manual. Accident Analysis and Prevention, 2016, 93, 160-168.	5.7	33
57	Re-visiting crash–speed relationships: A new perspective in crash modelling. Accident Analysis and Prevention, 2016, 86, 173-185.	5.7	101
58	The Poisson inverse Gaussian (PIG) generalized linear regression model for analyzing motor vehicle crash data. Journal of Transportation Safety and Security, 2016, 8, 18-35.	1.6	44
59	Investigating Peltzman effects in adopting mandatory seat belt laws in the US: Evidence from non-occupant fatalities. Transport Policy, 2015, 44, 58-64.	6.6	12
60	Validation of Crash Modification Factors Derived from Cross-Sectional Studies with Regression Models. Transportation Research Record, 2015, 2514, 88-96.	1.9	27
61	Modeling over-dispersed crash data with a long tail: Examining the accuracy of the dispersion parameter in Negative Binomial models. Analytic Methods in Accident Research, 2015, 5-6, 1-16.	8.2	33
62	Exploring the application of the Negative Binomial–Generalized Exponential model for analyzing traffic crash data with excess zeros. Analytic Methods in Accident Research, 2015, 7, 29-36.	8.2	33
63	Application of the Hyperâ€Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes. Risk Analysis, 2015, 35, 919-930.	2.7	8
64	A caution about using deviance information criterion while modeling traffic crashes. Safety Science, 2014, 62, 495-498.	4.9	30
65	A segment level analysis of multi-vehicle motorcycle crashes in Ohio using Bayesian multi-level mixed effects models. Safety Science, 2014, 66, 47-53.	4.9	21
66	Bayesian methodology to estimate and update safety performance functions under limited data conditions: A sensitivity analysis. Accident Analysis and Prevention, 2014, 64, 41-51.	5.7	25
67	Applying the Generalized Waring model for investigating sources of variance in motor vehicle crash analysis. Accident Analysis and Prevention, 2014, 73, 20-26.	5.7	15
68	Finite mixture modeling for vehicle crash data with application to hotspot identification. Accident Analysis and Prevention, 2014, 71, 319-326.	5.7	37
69	Analyzing different functional forms of the varying weight parameter for finite mixture of negative binomial regression models. Analytic Methods in Accident Research, 2014, 1, 39-52.	8.2	38
70	Comparing three commonly used crash severity models on sample size requirements: Multinomial logit, ordered probit and mixed logit models. Analytic Methods in Accident Research, 2014, 1, 72-85.	8.2	235
71	Analysis of Injury Severity in Crashes on Ramps and at Crossroad Ramp Terminals. Transportation Research Record, 2014, 2435, 37-44.	1.9	4
72	Comparison of Sichel and Negative Binomial Models in Hot Spot Identification. Transportation Research Record, 2014, 2460, 107-116.	1.9	25

#	Article	IF	CITATIONS
73	Severity Distribution Functions for Freeway Segments. Transportation Research Record, 2013, 2398, 19-27.	1.9	7
74	Goodness-of-fit testing for accident models with low means. Accident Analysis and Prevention, 2013, 61, 78-86.	5.7	10
75	The Poisson–Weibull generalized linear model for analyzing motor vehicle crash data. Safety Science, 2013, 54, 38-42.	4.9	41
76	Accounting for site-selection bias in before–after studies for continuous distributions: Characteristics and application using speed data. Transportation Research, Part A: Policy and Practice, 2013, 49, 256-269.	4.2	7
77	Bayesian road safety analysis: Incorporation of past evidence and effect of hyper-prior choice. Journal of Safety Research, 2013, 46, 31-40.	3.6	24
78	Using geographical information systems to organize police patrol routes effectively by grouping hotspots of crash and crime data. Journal of Transport Geography, 2013, 30, 138-148.	5.0	65
79	Application of finite mixture of negative binomial regression models with varying weight parameters for vehicle crash data analysis. Accident Analysis and Prevention, 2013, 50, 1042-1051.	5.7	69
80	Evaluating the double Poisson generalized linear model. Accident Analysis and Prevention, 2013, 59, 497-505.	5.7	20
81	Comparison of Sichel and Negative Binomial Models in Estimating Empirical Bayes Estimates. Transportation Research Record, 2013, 2392, 11-21.	1.9	36
82	Environmentally Conscious Highway Design for Vertical Grades. Transportation Research Record, 2013, 2341, 53-65.	1.9	9
83	Environmentally Conscious Highway Design for Crest Vertical Curves. Transportation Research Record, 2012, 2270, 96-106.	1.9	16
84	Effect of Roadside Features on Single-Vehicle Roadway Departure Crashes on Rural Two-Lane Roads. Transportation Research Record, 2012, 2309, 21-29.	1.9	18
85	Extension of Negative Binomial GARCH Model. Transportation Research Record, 2012, 2279, 31-39.	1.9	10
86	The Conway–Maxwell–Poisson model for analyzing crash data. Applied Stochastic Models in Business and Industry, 2012, 28, 122-127.	1.5	15
87	The negative binomial-Lindley generalized linear model: Characteristics and application using crash data. Accident Analysis and Prevention, 2012, 45, 258-265.	5.7	102
88	Analysis of crash severities using nested logit model—Accounting for the underreporting of crashes. Accident Analysis and Prevention, 2012, 45, 646-653.	5.7	52
89	Examining the effects of site selection criteria for evaluating the effectiveness of traffic safety countermeasures. Accident Analysis and Prevention, 2012, 47, 52-63.	5.7	34
90	Characterizing the Performance of the Conwayâ€Maxwell Poisson Generalized Linear Model. Risk Analysis, 2012, 32, 167-183.	2.7	41

#	Article	IF	CITATIONS
91	Estimating the safety performance of urban intersections in Lisbon, Portugal. Safety Science, 2012, 50, 1732-1739.	4.9	29
92	Investigation of Effects of Underreporting Crash Data on Three Commonly Used Traffic Crash Severity Models. Transportation Research Record, 2011, 2241, 51-58.	1.9	115
93	Application of Latent Class Growth Model to Longitudinal Analysis of Traffic Crashes. Transportation Research Record, 2011, 2236, 102-109.	1.9	17
94	Evaluation of Texas Department of Transportation Safety Improvement Index as a Prioritization Tool. Transportation Research Record, 2011, 2241, 39-50.	1.9	0
95	Examination of Crash Variances Estimated by Poisson–Gamma and Conway–Maxwell–Poisson Models. Transportation Research Record, 2011, 2241, 59-67.	1.9	15
96	Safety impact of Gateway Monuments. Accident Analysis and Prevention, 2011, 43, 290-300.	5.7	7
97	The statistical analysis of highway crash-injury severities: A review and assessment of methodological alternatives. Accident Analysis and Prevention, 2011, 43, 1666-1676.	5.7	753
98	The negative binomial–Lindley distribution as a tool for analyzing crash data characterized by a large amount of zeros. Accident Analysis and Prevention, 2011, 43, 1738-1742.	5.7	72
99	Safety Impacts of Design Element Trade-Offs for Multilane Rural Highways. Journal of Transportation Engineering, 2011, 137, 333-340.	0.9	5
100	Development of Accident Modification Factors for Rural Frontage Road Segments in Texas Using Generalized Additive Models. Journal of Transportation Engineering, 2011, 137, 74-83.	0.9	36
101	Identifying Hot Spots by Modeling Single-Vehicle and Multivehicle Crashes Separately. Transportation Research Record, 2010, 2147, 97-104.	1.9	21
102	Comparison of Application of Product of Baseline Models and Accident-Modification Factors and Models with Covariates: Predicted Mean Values and Variance. Transportation Research Record, 2010, 2147, 113-122.	1.9	13
103	Evaluating the Effects of Freeway Design Elements on Safety. Transportation Research Record, 2010, 2195, 58-69.	1.9	25
104	Investigating Regression to the Mean in Before-and-After Speed Data Analysis. Transportation Research Record, 2010, 2165, 52-58.	1.9	5
105	Bias properties of Bayesian statistics in finite mixture of negative binomial regression models in crash data analysis. Accident Analysis and Prevention, 2010, 42, 741-749.	5.7	63
106	Investigating the effect of modeling single-vehicle and multi-vehicle crashes separately on confidence intervals of Poisson–gamma models. Accident Analysis and Prevention, 2010, 42, 1273-1282.	5.7	100
107	Extension of the Application of Conway-Maxwell-Poisson Models: Analyzing Traffic Crash Data Exhibiting Underdispersion. Risk Analysis, 2010, 30, 1268-1276.	2.7	89
108	Horizontal Curve Accident Modification Factor with Consideration of Driveway Density on Rural Four-Lane Highways in Texas. Journal of Transportation Engineering, 2010, 136, 827-835.	0.9	28

#	Article	IF	CITATIONS
109	Examination of Methods to Estimate Crash Counts by Collision Type. Transportation Research Record, 2010, 2165, 12-20.	1.9	35
110	The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives. Transportation Research, Part A: Policy and Practice, 2010, 44, 291-305.	4.2	809
111	Bayesian mixture modeling approach to account for heterogeneity in speed data. Transportation Research Part B: Methodological, 2010, 44, 662-673.	5.9	74
112	Estimating the variance in before-after studies. Journal of Safety Research, 2009, 40, 257-263.	3.6	3
113	Application of finite mixture models for vehicle crash data analysis. Accident Analysis and Prevention, 2009, 41, 683-691.	5.7	140
114	How to Incorporate Accident Severity and Vehicle Occupancy into the Hot Spot Identification Process?. Transportation Research Record, 2009, 2102, 53-60.	1.9	25
115	Analyzing Different Parameterizations of the Varying Dispersion Parameter as a Function of Segment Length. Transportation Research Record, 2009, 2103, 108-118.	1.9	24
116	Examining Application of Aggregated and Disaggregated Poisson–Gamma Models Subjected to Low Sample Mean Bias. Transportation Research Record, 2009, 2136, 1-10.	1.9	23
117	Differences in the Performance of Safety Performance Functions Estimated for Total Crash Count and for Crash Count by Crash Type. Transportation Research Record, 2009, 2102, 115-123.	1.9	22
118	Use of Expert Panels in Highway Safety. Transportation Research Record, 2009, 2102, 101-107.	1.9	9
119	Methodology for estimating the variance and confidence intervals for the estimate of the product of baseline models and AMFs. Accident Analysis and Prevention, 2008, 40, 1013-1017.	5.7	16
120	Application of the Conway–Maxwell–Poisson generalized linear model for analyzing motor vehicle crashes. Accident Analysis and Prevention, 2008, 40, 1123-1134.	5.7	179
121	Investigating the effects of the fixed and varying dispersion parameters of Poisson-gamma models on empirical Bayes estimates. Accident Analysis and Prevention, 2008, 40, 1441-1457.	5.7	84
122	Predicting motor vehicle crashes using Support Vector Machine models. Accident Analysis and Prevention, 2008, 40, 1611-1618.	5.7	245
123	Effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter of Poisson-gamma models for modeling motor vehicle crashes: A Bayesian perspective. Safety Science, 2008, 46, 751-770.	4.9	172
124	Effects of Varying Dispersion Parameter of Poisson–Gamma Models on Estimation of Confidence Intervals of Crash Prediction Models. Transportation Research Record, 2008, 2061, 46-54.	1.9	32
125	Feasibility of Landfill Gas as a Liquefied Natural Gas Fuel Source for Refuse Trucks. Journal of the Air and Waste Management Association, 2008, 58, 613-619.	1.9	7
126	Accident Modification Factors for Medians on Freeways and Multilane Rural Highways in Texas. Transportation Research Record, 2008, 2083, 62-71.	1.9	23

#	Article	IF	CITATIONS
127	Adjustment for Maximum Likelihood Estimate of Negative Binomial Dispersion Parameter. Transportation Research Record, 2008, 2061, 9-19.	1.9	21
128	Multivariate Poisson-Lognormal Models for Jointly Modeling Crash Frequency by Severity. Transportation Research Record, 2007, 2019, 1-6.	1.9	231
129	Estimating Dispersion Parameter of Negative Binomial Distribution for Analysis of Crash Data. Transportation Research Record, 2007, 2019, 15-21.	1.9	22
130	Development of Accident Modification Factors for Rural Frontage Road Segments in Texas. Transportation Research Record, 2007, 2023, 20-27.	1.9	89
131	Further notes on the application of zero-inflated models in highway safety. Accident Analysis and Prevention, 2007, 39, 53-57.	5.7	177
132	A strategy to reduce older driver injuries at intersections using more accommodating roundabout design practices. Accident Analysis and Prevention, 2007, 39, 427-432.	5.7	28
133	Predicting motor vehicle collisions using Bayesian neural network models: An empirical analysis. Accident Analysis and Prevention, 2007, 39, 922-933.	5.7	191
134	Evaluating Safety Effects of Daylight Savings Time on Fatal and Nonfatal Injury Crashes in Texas. Transportation Research Record, 2006, 1953, 147-155.	1.9	7
135	Role and Application of Accident Modification Factors within Highway Design Process. Transportation Research Record, 2006, 1961, 65-73.	1.9	1
136	Effects of Sample Size on Goodness-of-Fit Statistic and Confidence Intervals of Crash Prediction Models Subjected to Low Sample Mean Values. Transportation Research Record, 2006, 1950, 35-43.	1.9	1
137	Modeling motor vehicle crashes using Poisson-gamma models: Examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter. Accident Analysis and Prevention, 2006, 38, 751-766.	5.7	285
138	Effects of Sample Size on Goodness-of-Fit Statistic and Confidence Intervals of Crash Prediction Models Subjected to Low Sample Mean Values. Transportation Research Record, 2006, 1950, 35-43.	1.9	8
139	Role and Application of Accident Modification Factors Within Highway Design Process. Transportation Research Record, 2006, 1961, 65-73.	1.9	6
140	Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory. Accident Analysis and Prevention, 2005, 37, 35-46.	5.7	601
141	Modeling crash-flow-density and crash-flow-V/C ratio relationships for rural and urban freeway segments. Accident Analysis and Prevention, 2005, 37, 185-199.	5.7	161
142	Developing Guidelines for Median Barrier Installation. Transportation Research Record, 2005, 1904, 2-19.	1.9	26
143	Calibration of Predictive Models for Estimating Safety of Ramp Design Configurations. Transportation Research Record, 2005, 1908, 88-95.	1.9	37
144	Does Separating Trucks from Other Traffic Improve Overall Safety?. Transportation Research Record, 2005, 1922, 156-166.	1.9	17

#	ARTICLE	IF	CITATIONS
145	Part 1: Roadside Safety Design: Developing Guidelines for Median Barrier Installation: Benefit-Cost Analysis with Texas Data. Transportation Research Record, 2005, 1904, 2-19.	1.9	19
146	Calibration of Predictive Models for Estimating Safety of Ramp Design Configurations. Transportation Research Record, 2005, 1908, 88-95.	1.9	44
147	Estimating the safety performance of urban road transportation networks. Accident Analysis and Prevention, 2004, 36, 609-620.	5.7	69
148	Modeling Traffic Crash-Flow Relationships for Intersections: Dispersion Parameter, Functional Form, and Bayes Versus Empirical Bayes Methods. Transportation Research Record, 2003, 1840, 31-40.	1.9	298
149	Development of a Procedure for Estimating Expected Safety Effects of a Contemplated Traffic Signal Installation. Transportation Research Record, 2003, 1840, 96-103.	1.9	11
150	Traffic Safety Diagnostics and Application of Countermeasures for Rural Roads in Burkina Faso. Transportation Research Record, 2003, 1846, 39-43.	1.9	3
151	Application of Accident Prediction Models for Computation of Accident Risk on Transportation Networks. Transportation Research Record, 2002, 1784, 17-26.	1.9	22
152	Calibration and Transferability of Accident Prediction Models for Urban Intersections. Transportation Research Record, 2002, 1784, 57-64.	1.9	94
153	Safety Effect of Roundabout Conversions in the United States: Empirical Bayes Observational Before-After Study. Transportation Research Record, 2001, 1751, 1-8.	1.9	212
154	Accident Prediction Models With and Without Trend: Application of the Generalized Estimating Equations Procedure. Transportation Research Record, 2000, 1717, 102-108.	1.9	183
155	Analysis of Two Left-Turn Equations from the Highway Capacity Manual. Transportation Research Record, 1998, 1646, 71-78.	1.9	3
156	Impact of Shoulder Width and Median Width on Safety. , 0, , .		31
157	Traffic Safety Diagnostic and Application of Countermeasures for Rural Roads in Burkina Faso. SSRN Electronic Journal, 0, , .	0.4	0