Melanie Timpel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5952282/publications.pdf

Version: 2024-02-01

393982 433756 1,045 29 19 31 citations h-index g-index papers 31 31 31 1569 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The role of strontium in modifying aluminium–silicon alloys. Acta Materialia, 2012, 60, 3920-3928.	3.8	292
2	Surface Modification of ZnO(0001)–Zn with Phosphonate-Based Self-Assembled Monolayers: Binding Modes, Orientation, and Work Function. Chemistry of Materials, 2014, 26, 5042-5050.	3. 2	66
3	3D Visualisation of PEMFC Electrode Structures Using FIB Nanotomography. Fuel Cells, 2010, 10, 966-972.	1.5	53
4	Collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics. Nature Communications, 2018, 9, 2661.	5.8	53
5	Tuning the Work Function of Graphene-on-Quartz with a High Weight Molecular Acceptor. Journal of Physical Chemistry C, 2014, 118, 4784-4790.	1.5	50
6	Three-dimensional visualization of the microstructure development of Sr-modified Al–15Si casting alloy using FIB-EsB tomography. Acta Materialia, 2010, 58, 6600-6608.	3.8	45
7	Microstructural investigation of Sr-modified Al–15 wt%Si alloys in the range from micrometer to atomic scale. Ultramicroscopy, 2011, 111, 695-700.	0.8	41
8	Distribution of Fe-rich phases in eutectic grains of Sr-modified Al–10wt.% Si–0.1wt.% Fe casting alloy. Journal of Alloys and Compounds, 2013, 558, 18-25.	2.8	36
9	Sr–Al–Si co-segregated regions in eutectic Si phase of Sr-modified Al–10Si alloy. Ultramicroscopy, 2013, 132, 216-221.	0.8	36
10	Tuning the Electronic Structure of Graphene by Molecular Dopants: Impact of the Substrate. ACS Applied Materials & Dopants: Impact of the Substrate. ACS Applied Materials & Dopants: Interfaces, 2015, 7, 19134-19144.	4.0	34
11	Boosting and Balancing Electron and Hole Mobility in Single- and Bilayer WSe ₂ Devices <i>via</i> Tailored Molecular Functionalization. ACS Nano, 2019, 13, 11613-11622.	7.3	34
12	Energy-Level Engineering at ZnO/Oligophenylene Interfaces with Phosphonate-Based Self-Assembled Monolayers. ACS Applied Materials & Samp; Interfaces, 2015, 7, 11900-11907.	4.0	33
13	2D-MoS2 goes 3D: transferring optoelectronic properties of 2D MoS2 to a large-area thin film. Npj 2D Materials and Applications, 2021, 5, .	3.9	31
14	Effective Work Function Reduction of Practical Electrodes Using an Organometallic Dimer. Advanced Functional Materials, 2016, 26, 2493-2502.	7.8	28
15	Dynamic Photoswitching of Electron Energy Levels at Hybrid ZnO/Organic Photochromic Molecule Junctions. Advanced Functional Materials, 2018, 28, 1800716.	7.8	26
16	Electrode Work Function Engineering with Phosphonic Acid Monolayers and Molecular Acceptors: Charge Redistribution Mechanisms. Advanced Functional Materials, 2018, 28, 1704438.	7.8	25
17	Versatile and Scalable Strategy To Grow Sol–Gel Derived 2H-MoS ₂ Thin Films with Superior Electronic Properties: A Memristive Case. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34392-34400.	4.0	22
18	Modification of Mo–Si alloy microstructure by small additions of Zr. Ultramicroscopy, 2011, 111, 706-710.	0.8	21

#	Article	IF	CITATION
19	Electronic structure of CuTPP and CuTPP(F) complexes: a combined experimental and theoretical study II. Physical Chemistry Chemical Physics, 2016, 18, 24890-24904.	1.3	19
20	Tailoring Superconductivity in Large-Area Single <i>-</i> -Layer NbSe ₂ via Self-Assembled Molecular Adlayers. Nano Letters, 2021, 21, 136-143.	4.5	19
21	Electronic structures of CuTPP and CuTPP(F) complexes. A combined experimental and theoretical study I. Physical Chemistry Chemical Physics, 2016, 18, 18727-18738.	1.3	16
22	Impact of Molecular Dipole Moments on Fermi Level Pinning in Thin Films. Journal of Physical Chemistry C, 2014, 118, 11731-11737.	1.5	14
23	Functionalization of SiC/SiO _{<i>x</i>} nanowires with a porphyrin derivative: a hybrid nanosystem for X-ray induced singlet oxygen generation. Molecular Systems Design and Engineering, 2017, 2, 165-172.	1.7	11
24	Enhancement of X-ray-Excited Red Luminescence of Chromium-Doped Zinc Gallate via Ultrasmall Silicon Carbide Nanocrystals. Chemistry of Materials, 2021, 33, 2457-2465.	3.2	9
25	Polarity of pulsed laser deposited ZnO nanostructures. Applied Physics Letters, 2016, 108, .	1.5	6
26	A novel combined experimental and multiscale theoretical approach to unravel the structure of SiC/SiO _x core/shell nanowires for their optimal design. Nanoscale, 2018, 10, 13449-13461.	2.8	5
27	Synthesis of MoS2 Thin Film by Ionized Jet Deposition: Role of Substrate and Working Parameters. Surfaces, 2020, 3, 683-693.	1.0	4
28	Unravelling Work Function Contributions and Their Engineering in 2H-MoS ₂ Single Crystal Discovered by Molecular Probe Interaction. Journal of Physical Chemistry C, 2020, 124, 6732-6740.	1.5	4
29	Oligothiopheneâ€Based Phosphonates for Surface Modification of Ultraflat Transparent Conductive Oxides, Advanced Materials Interfaces, 2020, 7, 1902114.	1.9	2