
## Hamed Shahmir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5950775/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy<br>processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2016, 676, 294-303.        | 2.6 | 225       |
| 2  | Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel<br>angular pressing. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2017, 705, 411-419.                              | 2.6 | 137       |
| 3  | Heat treatment effect on the microstructure, tensile properties and dry sliding wear behavior of A356–10%B4C cast composites. Materials & Design, 2010, 31, 4414-4422.                                                                                                   | 5.1 | 106       |
| 4  | Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2017, 685, 342-348.                                        | 2.6 | 91        |
| 5  | Effect of Ti on phase stability and strengthening mechanisms of a nanocrystalline CoCrFeMnNi<br>high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2018, 725, 196-206.                           | 2.6 | 66        |
| 6  | Using heat treatments, high-pressure torsion and post-deformation annealing to optimize the properties of Ti-6Al-4V alloys. Acta Materialia, 2017, 141, 419-426.                                                                                                         | 3.8 | 60        |
| 7  | Effect of a minor titanium addition on the superplastic properties of a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 718, 468-476.        | 2.6 | 60        |
| 8  | Evidence of FCC to HCP and BCC-martensitic transformations in a CoCrFeNiMn high-entropy alloy by severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 807, 140875.                      | 2.6 | 48        |
| 9  | Shape memory effect in nanocrystalline NiTi alloy processed by high-pressure torsion. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015,<br>626, 203-206.                                                      | 2.6 | 46        |
| 10 | The processing of NiTi shape memory alloys by equal-channel angular pressing at room temperature.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2013, 576, 178-184.                                          | 2.6 | 45        |
| 11 | Characteristics of the allotropic phase transformation in titanium processed by high-pressure<br>torsion using different rotation speeds. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2016, 667, 293-299.     | 2.6 | 38        |
| 12 | Fine-tuning of mechanical properties in V10Cr15Mn5Fe35Co10Ni25 high-entropy alloy through<br>high-pressure torsion and annealing. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2020, 771, 138604.              | 2.6 | 38        |
| 13 | CoCrFeNiMn high entropy alloy microstructure and mechanical properties after severe cold shape<br>rolling and annealing. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2020, 793, 139884.                       | 2.6 | 38        |
| 14 | Evolution of microstructure and hardness in NiTi shape memory alloys processed by high-pressure torsion. Journal of Materials Science, 2014, 49, 2998-3009.                                                                                                              | 1.7 | 36        |
| 15 | Superelastic behavior of aged and thermomechanical treated NiTi alloy at Af+10°C. Materials & Design, 2011, 32, 365-370.                                                                                                                                                 | 5.1 | 35        |
| 16 | Factors influencing superplasticity in the Ti-6Al-4V alloy processed by high-pressure torsion.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2018, 718, 198-206.                                             | 2.6 | 32        |
| 17 | Annealing behavior and shape memory effect in NiTi alloy processed by equal-channel angular pressing<br>at room temperature. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2015, 629, 16-22.                    | 2.6 | 31        |
| 18 | An evaluation of the hexagonal close-packed to face-centered cubic phase transformation in a<br>Ti-6Al-4V alloy during high-pressure torsion. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2017, 704, 212-217. | 2.6 | 30        |

HAMED SHAHMIR

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Mechanical properties and microstructural evolution of nanocrystalline titanium at elevated<br>temperatures. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2016, 669, 358-366.       | 2.6 | 24        |
| 20 | Effect of Initial Grain Size on Deformation Mechanism during Highâ€Pressure Torsion in V 10 Cr 15 Mn 5<br>Fe 35 Co 10 Ni 25 Highâ€Entropy Alloy. Advanced Engineering Materials, 2020, 22, 1900587.                                           | 1.6 | 21        |
| 21 | Effect of carbon content and annealing on structure and hardness of CrFe2NiMnV0.25 high-entropy alloys processed by high-pressure torsion. Journal of Materials Science, 2018, 53, 11813-11822.                                               | 1.7 | 20        |
| 22 | Significance of Ti addition on precipitation in CoCrFeNiMn high-entropy alloy. Journal of Alloys and Compounds, 2021, 888, 161530.                                                                                                            | 2.8 | 20        |
| 23 | Shape memory characteristics of a nanocrystalline TiNi alloy processed by HPT followed by post-deformation annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 734, 445-452. | 2.6 | 18        |
| 24 | Microstructure and excess free volume of severely cold shape rolled CoCrFeNiMn high entropy alloy.<br>Journal of Alloys and Compounds, 2020, 840, 155672.                                                                                     | 2.8 | 17        |
| 25 | Using dilatometry to study martensitic stabilization and recrystallization kinetics in a severely deformed NiTi alloy. Journal of Materials Science, 2015, 50, 4003-4011.                                                                     | 1.7 | 15        |
| 26 | Precipitation kinetics in heavily deformed CoCrFeNiMn high entropy alloy. Materials Letters, 2021, 288, 129359.                                                                                                                               | 1.3 | 14        |
| 27 | Microstructure tailoring to enhance mechanical properties in CoCrFeNiMn high-entropy alloy by Ti<br>addition and thermomechanical treatment. Materials Characterization, 2021, 182, 111513.                                                   | 1.9 | 14        |
| 28 | Effect of Cu on Amorphization of a TiNi Alloy during HPT and Shape Memory Effect after<br>Postâ€Đeformation Annealing. Advanced Engineering Materials, 2020, 22, 1900387.                                                                     | 1.6 | 12        |
| 29 | Design principles of low-activation high entropy alloys. Journal of Alloys and Compounds, 2022, 907, 164526.                                                                                                                                  | 2.8 | 12        |
| 30 | Study of thermomechanical treatment on mechanical-induced phase transformation of NiTi and TiNiCu wires. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 21, 32-36.                                                         | 1.5 | 10        |
| 31 | Shape memory effect of NiTi alloy processed by equal-channel angular pressing followed by post deformation annealing. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012111.                                             | 0.3 | 10        |
| 32 | Evaluating a New Coreâ€Sheath Procedure for Processing Hard Metals by Equalâ€Channel Angular<br>Pressing. Advanced Engineering Materials, 2014, 16, 918-926.                                                                                  | 1.6 | 10        |
| 33 | Hardening and thermal stability of a nanocrystalline CoCrFeNiMnTi <sub>0.1</sub> high-entropy alloy processed by high-pressure torsion. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012017.                          | 0.3 | 10        |
| 34 | Upgrading of superior strength–ductility trade-off of CoCrFeNiMn high-entropy alloy by<br>microstructural engineering. Materialia, 2022, 22, 101394.                                                                                          | 1.3 | 10        |
| 35 | Evaluating the Room Temperature ECAP Processing of a NiTi Alloy via Simulation and Experiments.<br>Advanced Engineering Materials, 2015, 17, 532-538.                                                                                         | 1.6 | 9         |
| 36 | Microstructural evolution and mechanical properties of CoCrFeNiMnTi <sub>x</sub> highâ€entropy<br>alloys. Materialwissenschaft Und Werkstofftechnik, 2021, 52, 441-451.                                                                       | 0.5 | 9         |

HAMED SHAHMIR

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Control of Superelastic Behavior of NiTi Wires Aided by Thermomechanical Treatment with Reference<br>to Three-Point Bending. Journal of Materials Engineering and Performance, 2014, 23, 1386-1391.                                                                      | 1.2 | 7         |
| 38 | The potential for achieving superplasticity in high-entropy alloys processed by severe plastic deformation. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012040.                                                                                 | 0.3 | 7         |
| 39 | An assessment of the high-entropy alloy system VCrMnFeAlx. Journal of Alloys and Compounds, 2021, 888, 161525.                                                                                                                                                           | 2.8 | 6         |
| 40 | Developing Superplasticity in High-Entropy Alloys Processed by Severe Plastic Deformation. Materials<br>Science Forum, 0, 941, 1059-1064.                                                                                                                                | 0.3 | 5         |
| 41 | Microstructure and mechanical properties of ultrafine-grained titanium processed by multi-pass ECAP<br>at room temperature using core–sheath method. Journal of Materials Research, 2018, 33, 3809-3817.                                                                 | 1.2 | 5         |
| 42 | Room Temperature Flow Behavior of Ti Deformed by Equal hannel Angular Pressing Using<br>Core–Sheath Method. Advanced Engineering Materials, 2017, 19, 1600552.                                                                                                           | 1.6 | 4         |
| 43 | Effect of Initial Grain Size on Deformation Mechanism during Highâ€Pressure Torsion in<br>V <sub>10</sub> Cr <sub>15</sub> Mn <sub>5</sub> Fe <sub>35</sub> Co <sub>10</sub> Ni <sub>25</sub><br>Highâ€Entropy Alloy. Advanced Engineering Materials. 2020. 22. 2070002. | 1.6 | 1         |