JoAnne McLaurin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5950631/publications.pdf

Version: 2024-02-01

69 papers

6,559 citations

94433 37 h-index 98798 67 g-index

77 all docs

77
docs citations

times ranked

77

6981 citing authors

#	Article	IF	CITATIONS
1	Parvalbumin neuroplasticity compensates for somatostatin impairment, maintaining cognitive function in Alzheimer's disease. Translational Neurodegeneration, 2022, 11, 26.	8.0	13
2	Covert strokes prior to Alzheimer's disease onset accelerate peri-lesional pathology but not cognitive deficits in an inducible APP mouse model. Brain Research, 2021, 1754, 147233.	2.2	2
3	Cerebrovascular damage after midlife transient hypertension in non-transgenic and Alzheimer's disease rats. Brain Research, 2021, 1758, 147369.	2.2	6
4	Regional differences in Alzheimerâ \in TM s disease pathology confound behavioural rescue after amyloid- \hat{l}^2 attenuation. Brain, 2020, 143, 359-373.	7.6	41
5	The effects of voluntary running on cerebrovascular morphology and spatial short-term memory in a mouse model of amyloidosis. NeuroImage, 2020, 222, 117269.	4.2	6
6	Combinatorial Treatment Using Umbilical Cord Perivascular Cells and A \hat{I}^2 Clearance Rescues Vascular Function Following Transient Hypertension in a Rat Model of Alzheimer Disease. Hypertension, 2019, 74, 1041-1051.	2.7	11
7	Rhoâ€associated protein kinases as therapeutic targets for both vascular and parenchymal pathologies in Alzheimer's disease. Journal of Neurochemistry, 2018, 144, 659-668.	3.9	24
8	Investigating the efficacy of a combination Aβ-targeted treatment in a mouse model of Alzheimer's disease. Brain Research, 2018, 1678, 138-145.	2.2	28
9	Earlyâ€stage attenuation of phaseâ€amplitude coupling in the hippocampus and medial prefrontal cortex in a transgenic rat model of Alzheimer's disease. Journal of Neurochemistry, 2018, 144, 669-679.	3.9	69
10	Early neurovascular dysfunction in a transgenic rat model of Alzheimer's disease. Scientific Reports, 2017, 7, 46427.	3.3	83
11	The role of the immune system in Alzheimer disease: Etiology and treatment. Ageing Research Reviews, 2017, 40, 84-94.	10.9	167
12	Neurovascular unit remodelling in the subacute stage of stroke recovery. NeuroImage, 2017, 146, 869-882.	4.2	45
13	Effects of Neurotrophic Support and Amyloid-Targeted Combined Therapy on Adult Hippocampal Neurogenesis in a Transgenic Model of Alzheimer's Disease. PLoS ONE, 2016, 11, e0165393.	2.5	8
14	α-Synuclein aggregation, seeding and inhibition by scyllo-inositol. Biochemical and Biophysical Research Communications, 2016, 469, 529-534.	2.1	25
15	Interaction between therapeutic interventions for Alzheimer's disease and physiological Aβ clearance mechanisms. Frontiers in Aging Neuroscience, 2015, 7, 64.	3.4	26
16	Venular degeneration leads to vascular dysfunction in a transgenic model of Alzheimer's disease. Brain, 2015, 138, 1046-1058.	7.6	65
17	Impaired Cholinergic Excitation of Prefrontal Attention Circuitry in the TgCRND8 Model of Alzheimer's Disease. Journal of Neuroscience, 2015, 35, 12779-12791.	3.6	18
18	Determining composition of micron-scale protein deposits in neurodegenerative disease by spatially targeted optical microproteomics. ELife, 2015, 4, .	6.0	38

#	Article	IF	CITATIONS
19	α-Melanocyte Stimulating Hormone Prevents GABAergic Neuronal Loss and Improves Cognitive Function in Alzheimer's Disease. Journal of Neuroscience, 2014, 34, 6736-6745.	3.6	48
20	scyllo-Inositol Promotes Robust Mutant Huntingtin Protein Degradation. Journal of Biological Chemistry, 2014, 289, 3666-3676.	3.4	13
21	Reactive astrocytes associated with plaques in TgCRND8 mouse brain and in human Alzheimer brain express phosphoprotein enriched in astrocytes (PEAâ€15). FEBS Letters, 2013, 587, 2448-2454.	2.8	13
22	Cerebrovascular contributions to Alzheimer's disease pathophysiology and potential therapeutic interventions in mouse models. European Journal of Neuroscience, 2013, 37, 1994-2004.	2.6	10
23	Effects of voluntary exercise on cognition, neurogenesis, and plaque load in a mouse model of Alzheimers disease FASEB Journal, 2013, 27, 712.33.	0.5	0
24	Adult hippocampal neurogenesis: Another target of scylloinositol treatment?. FASEB Journal, 2013, 27, 316.3.	0.5	0
25	Reduced Tissue Levels of Noradrenaline Are Associated with Behavioral Phenotypes of the TgCRND8 Mouse Model of Alzheimer's Disease. Neuropsychopharmacology, 2012, 37, 1934-1944.	5.4	62
26	In Vivo Uptake of & Discourse (Amyloid by Non-Plaque Associated Microglia. Current Alzheimer Research, 2012, 9, 890-901.	1.4	15
27	Amyloid-β-dependent compromise of microvascular structure and function in a model of Alzheimer's disease. Brain, 2012, 135, 3039-3050.	7.6	134
28	Object recognition memory and BDNF expression are reduced in young TgCRND8 mice. Neurobiology of Aging, 2012, 33, 555-563.	3.1	92
29	Inhibition of amyloid-beta peptide aggregation rescues the autophagic deficits in the TgCRND8 mouse model of Alzheimer disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1629-1637.	3.8	41
30	Hippocampal GABAergic Neurons are Susceptible to Amyloid- \hat{l}^2 Toxicity in vitro and are Decreased in Number in the Alzheimer's Disease TgCRND8 Mouse Model. Journal of Alzheimer's Disease, 2012, 29, 293-308.	2.6	61
31	scyllo-Inositol, Preclinical, and Clinical Data for Alzheimer's Disease. Advances in Pharmacology, 2012, 64, 177-212.	2.0	61
32	Region-specific distribution of \hat{l}^2 -amyloid peptide and cytokine expression in TgCRND8 mice. Neuroscience Letters, 2011, 492, 5-10.	2.1	16
33	Sodium/myo-Inositol Transporters: Substrate Transport Requirements and Regional Brain Expression in the TgCRND8 Mouse Model of Amyloid Pathology. PLoS ONE, 2011, 6, e24032.	2.5	34
34	Chapter 5. <i>scyllo</i> -lnositol: A Potential Therapeutic for Alzheimer's Disease. RSC Drug Discovery Series, 2010, , 94-116.	0.3	2
35	Small molecule $\langle i \rangle \hat{l}^2 \langle i \rangle \hat{a} \in \mathbb{R}$ myloid inhibitors that stabilize protofibrillar structures $\langle i \rangle$ in vitro $\langle i \rangle$ improve cognition and pathology in a mouse model of Alzheimer $\hat{a} \in \mathbb{R}$ disease. European Journal of Neuroscience, 2010, 31, 203-213.	2.6	53
36	Antibodies Targeted to the Brain with Image-Guided Focused Ultrasound Reduces Amyloid- \hat{l}^2 Plaque Load in the TgCRND8 Mouse Model of Alzheimer's Disease. PLoS ONE, 2010, 5, e10549.	2.5	319

#	Article	IF	CITATIONS
37	Amyloid- \hat{l}^2 fibrillogenesis: Structural insight and therapeutic intervention. Experimental Neurology, 2010, 223, 311-321.	4.1	113
38	Selective targeting of perivascular macrophages for clearance of \hat{l}^2 -amyloid in cerebral amyloid angiopathy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1261-1266.	7.1	323
39	Small molecule inhibitors of Al̂²â€aggregation and neurotoxicity. Drug Development Research, 2009, 70, 111-124.	2.9	93
40	Reduced oligomeric and vascular amyloid- \hat{l}^2 following immunization of TgCRND8 mice with an Alzheimer's DNA vaccine. Vaccine, 2009, 27, 1365-1376.	3.8	28
41	Synthesis and preliminary biological evaluations of [18F]-1-deoxy-1-fluoro-scyllo-inositol. Chemical Communications, 2009, , 5527.	4.1	17
42	Synthesis of scyllo-inositol derivatives and their effects on amyloid beta peptide aggregation. Bioorganic and Medicinal Chemistry, 2008, 16, 7177-7184.	3.0	64
43	Modulation of amyloidâ€Î² aggregation and toxicity by inosose stereoisomers. FEBS Journal, 2008, 275, 1663-1674.	4.7	43
44	Immunotherapy as treatment for Alzheimer's disease. Expert Review of Neurotherapeutics, 2007, 7, 1535-1548.	2.8	27
45	Properties of scyllo–inositol as a therapeutic treatment of AD-like pathology. Journal of Molecular Medicine, 2007, 85, 603-611.	3.9	114
46	Cyclohexanehexol inhibitors of ${\rm A\hat{l}^2}$ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nature Medicine, 2006, 12, 801-808.	30.7	342
47	Immunization with amyloid \hat{l}^2 using GM-CSF and IL-4 reduces amyloid burden and alters plaque morphology. Neurobiology of Disease, 2006, 23, 433-444.	4.4	20
48	Biophysical characterization of longer forms of amyloid beta peptides: possible contribution to flocculent plaque formation. Journal of Neurochemistry, 2005, 95, 1667-1676.	3.9	12
49	Ciglitazone increases basal cytokine expression in the central nervous system of adult rats. Brain Research, 2005, 1034, 139-146.	2.2	13
50	PPAR-α Expression Inversely Correlates with Inflammatory Cytokines IL-1β and TNF-α in Aging Rats. Neurochemical Research, 2005, 30, 1369-1375.	3.3	32
51	Cholesterol and Apoe: A Target for Alzheimers Disease Therapeutics. CNS and Neurological Disorders, 2005, 4, 553-567.	4.3	9
52	Refining an Alzheimer's vaccine to avoid an inflammatory response. Expert Opinion on Biological Therapy, 2005, 5, 809-816.	3.1	7
53	Contribution of simple saccharides to the stabilization of amyloid structure. Biochemical and Biophysical Research Communications, 2005, 328, 1067-1072.	2.1	55
54	Interaction of human and mouse $A\hat{l}^2$ peptides. Journal of Neurochemistry, 2004, 91, 1398-1403.	3.9	51

#	Article	IF	Citations
55	AÎ ² 42-Peptide Assembly on Lipid Bilayers. Journal of Molecular Biology, 2002, 318, 97-107.	4.2	183
56	Phenotypic and functional changes in glial cells as a function of age. Neurobiology of Aging, 2002, 23, 105-115.	3.1	69
57	Amyloid- \hat{l}^2 Peptide Assembly: A Critical Step in Fibrillogenesis and Membrane Disruption. Biophysical Journal, 2001, 80, 1359-1371.	0.5	231
58	Cellular Membrane Composition Defines A \hat{l}^2 -Lipid Interactions. Journal of Biological Chemistry, 2001, 276, 33561-33568.	3.4	90
59	Amyloid- \hat{l}^2 Interactions with Chondroitin Sulfate-derived Monosaccharides and Disaccharides. Journal of Biological Chemistry, 2001, 276, 6412-6419.	3.4	70
60	Effect of amino-acid substitutions on Alzheimer's amyloid- \hat{l}^2 peptide-glycosaminoglycan interactions. FEBS Journal, 2000, 267, 6353-6361.	0.2	79
61	Examining the zinc binding site of the amyloid- \hat{l}^2 peptide. FEBS Journal, 2000, 267, 6692-6698.	0.2	117
62	${\sf A\hat{l}^2}$ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature, 2000, 408, 979-982.	27.8	1,472
63	Inositol Stereoisomers Stabilize an Oligomeric Aggregate of Alzheimer Amyloid \hat{l}^2 Peptide and Inhibit A \hat{l}^2 -induced Toxicity. Journal of Biological Chemistry, 2000, 275, 18495-18502.	3.4	240
64	Interactions of Alzheimer amyloid- \hat{l}^2 peptides with glycosaminoglycans. FEBS Journal, 1999, 266, 1101-1110.	0.2	237
65	A sulfated proteoglycan aggregation factor mediates amyloid- \hat{l}^2 peptide fibril formation and neurotoxicity. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 1999, 6, 233-243.	3.0	43
66	Structural Transitions Associated with the Interaction of Alzheimer \hat{l}^2 -Amyloid Peptides with Gangliosides. Journal of Biological Chemistry, 1998, 273, 4506-4515.	3.4	173
67	Amyloid \hat{l}^2 -protein (A \hat{l}^2) associated with lipid molecules: immunoreactivity distinct from that of soluble A \hat{l}^2 . FEBS Letters, 1997, 420, 43-46.	2.8	42
68	Characterization of the Interactions of Alzheimer beta-Amyloid Peptides with Phospholipid Membranes. FEBS Journal, 1997, 245, 355-363.	0.2	189
69	Membrane Disruption by Alzheimer \hat{l}^2 -Amyloid Peptides Mediated through Specific Binding to Either Phospholipids or Gangliosides. Journal of Biological Chemistry, 1996, 271, 26482-26489.	3.4	307