
Ruihao Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5950615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics. Nature Energy, 2018, 3, 1051-1058.	19.8	281
2	Designing ternary blend all-polymer solar cells with an efficiency of over 10% and a fill factor of 78%. Nano Energy, 2018, 51, 434-441.	8.2	61
3	High-Performance All-Polymer Photodetectors via a Thick Photoactive Layer Strategy. ACS Applied Materials & Interfaces, 2019, 11, 14208-14214.	4.0	54
4	Star-shaped electron acceptors containing a truxene core for non-fullerene solar cells. Organic Electronics, 2018, 52, 42-50.	1.4	52
5	Self-Doped N-Type Water/Alcohol Soluble-Conjugated Polymers with Tailored Backbones and Polar Groups for Highly Efficient Polymer Solar Cells. Solar Rrl, 2017, 1, 1700055.	3.1	46
6	8.0% Efficient all-polymer solar cells based on novel starburst polymer acceptors. Science China Chemistry, 2018, 61, 576-583.	4.2	28
7	Highâ€Performance Green Solvent Processed Ternary Blended Allâ€Polymer Solar Cells Enabled by Complementary Absorption and Improved Morphology. Solar Rrl, 2018, 2, 1800196.	3.1	26
8	Introducing cyclic alkyl chains into small-molecule acceptors for efficient polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 7046-7053.	2.7	23
9	A Rational Design and Synthesis of Cross-Conjugated Small Molecule Acceptors Approaching High-Performance Fullerene-Free Polymer Solar Cells. Chemistry of Materials, 2018, 30, 4331-4342.	3.2	22
10	Cross-conjugated n-type polymer acceptors for efficient all-polymer solar cells. Chemical Communications, 2018, 54, 2204-2207.	2.2	18
11	Overcoming the morphological and efficiency limit in all-polymer solar cells by designing conjugated random copolymers containing a naphtho[1,2- <i>c</i> ;5,6- <i>c</i> ′]bis([1,2,5]thiadiazole)] moiety. Journal of Materials Chemistry A, 2018, 6, 23295-23300.	5.2	15
12	Efficient Non-fullerene Organic Solar Cells Enabled by Sequential Fluorination of Small-Molecule Electron Acceptors. Frontiers in Chemistry, 2018, 6, 303.	1.8	11
13	Synthesis of mediumâ€bandgap Ï€â€Conjugated polymers based on isomers of 5â€Alkylphenanthridinâ€6(5H)â€ and 6â€Alkoxylphenanthridine. Journal of Polymer Science Part A, 2016, 54, 2119-2127.	one 2.5	10
14	Synthesis and characterization of π-conjugated copolymers based on alkyltriazolyl substituted benzodithiophene. New Journal of Chemistry, 2016, 40, 4727-4734.	1.4	10
15	Efficient Nonâ€Fullerene Organic Solar Cells Based on a Wideâ€Bandgap Polymer Donor Containing an Alkylthiophenyl‧ubstituted Benzodithiophene Moiety. ChemPhysChem, 2019, 20, 2668-2673.	1.0	5
16	Influence of the –CN substitution position on the performance of dicyanodistyrylbenzene-based polymer solar cells. Polymer Chemistry, 2020, 11, 1653-1662.	1.9	5
17	Cu(<scp>ii</scp>)-Porphyrin based near-infrared molecules: synthesis, characterization and photovoltaic application. New Journal of Chemistry, 2021, 45, 1601-1608.	1.4	4
18	Diethynylbenzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]dithiopheneâ€based small molecule and crossâ€conjugated copolymers for organic solar cells. Journal of Polymer Science Part A, 2017, 55, 660-671.	2.5	3

#	Article	IF	CITATIONS
19	Polymer acceptor based on naphthalene diimide and diethynylbenzo[1,2-b:4,5-b'] dithiophene units for efficient all-polymer solar cells. Dyes and Pigments, 2021, 189, 109246.	2.0	3