
Luis J Alemany

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5950419/publications.pdf Version: 2024-02-01

LUIS LALEMANY

#	Article	IF	CITATIONS
1	Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane. Journal of Catalysis, 2010, 270, 136-145.	6.2	272
2	Characterization of alumina-supported Pt, Ni and PtNi alloy catalysts for the dry reforming of methane. Journal of Catalysis, 2010, 274, 11-20.	6.2	199
3	Characterization and composition of commercial V2O5&z.sbndWO3&z.sbndTiO2 SCR catalysts. Applied Catalysis B: Environmental, 1996, 10, 299-311.	20.2	161
4	Improved Pt-Ni nanocatalysts for dry reforming of methane. Applied Catalysis A: General, 2010, 377, 191-199.	4.3	127
5	In situ DRIFT–TRM study of simultaneous NOx and soot removal over Pt–Ba and Pt–K NSR catalysts. Journal of Catalysis, 2010, 270, 256-267.	6.2	73
6	Transient study of the dry reforming of methane over Pt supported on different Î ³ -Al2O3. Catalysis Today, 2010, 149, 380-387.	4.4	72
7	Surface and catalytic properties of some γ-Al2O3 powders. Applied Catalysis A: General, 2014, 483, 41-51.	4.3	67
8	RhNi nanocatalysts for the CO2 and CO2+ H2O reforming of methane. Catalysis Today, 2011, 172, 136-142.	4.4	65
9	Surface Acidity and Properties of Titania-Silica Catalysts. Chemistry of Materials, 1995, 7, 1342-1348.	6.7	53
10	Production of hydrogen by steam reforming of C3 organics over Pd–Cu/γγ-Al2O3 catalyst. International Journal of Hydrogen Energy, 2006, 31, 13-19.	7.1	41
11	Hydrogen production by steam reforming of DME over Ni-based catalysts modified with vanadium. International Journal of Hydrogen Energy, 2016, 41, 19781-19788.	7.1	39
12	CO2-reforming of natural gas components over a highly stable and selective NiMg/Al2O3 nanocatalyst. Catalysis Today, 2012, 197, 50-57.	4.4	34
13	Influence of the calcination temperature on the activity of hydroxyapatite-supported palladium catalyst in the methane oxidation reaction. Applied Catalysis B: Environmental, 2020, 277, 119280.	20.2	31
14	NiBa catalysts for CO2-reforming of methane. Catalysis Communications, 2010, 11, 1133-1136.	3.3	24
15	Propene versus propane steam reforming for hydrogen production over Pd-based and Ni-based catalysts. Catalysis Communications, 2005, 6, 441-445.	3.3	23
16	Intrinsic reactivity analysis of soot removal in LNT-catalysts. Applied Catalysis B: Environmental, 2016, 193, 110-120.	20.2	23
17	A study of Cu-SAPO-34 catalysts for SCR of NOx by ammonia. Microporous and Mesoporous Materials, 2017, 241, 258-265.	4.4	23
18	Catalytic performance of Cu/hydroxyapatite catalysts in CO preferential oxidation in H2-rich stream. International Journal of Hydrogen Energy, 2019, 44, 12649-12660.	7.1	21

Luis J Alemany

#	Article	IF	CITATIONS
19	Dimethyl ether synthesis via methanol dehydration over Ta-supported catalysts. Applied Catalysis A: General, 2019, 582, 117088.	4.3	21
20	Coupling of glycerol-APR and in situ hydrodeoxygenation of fatty acid to produce hydrocarbons. Fuel Processing Technology, 2019, 190, 21-28.	7.2	21
21	Biofuel steam reforming catalyst for fuel cell application. Catalysis Today, 2015, 254, 129-134.	4.4	19
22	Catalytic properties of cobalt-promoted Pd/HAP catalyst for CO-cleanup of H2-rich stream. International Journal of Hydrogen Energy, 2018, 43, 16949-16958.	7.1	18
23	Continuous-Flow Process for Glycerol Conversion to Solketal Using a Brönsted Acid Functionalized Carbon-Based Catalyst. Catalysts, 2019, 9, 609.	3.5	18
24	Influence of CO2 and H2O co-feeding in the NOx abatement by SCR over an efficient Cu-CHA catalyst. Chemical Engineering Science, 2019, 201, 373-381.	3.8	18
25	Nanofibrous Pt-Ba Lean NO trap catalyst with improved sulfur resistance and thermal durability. Catalysis Today, 2011, 175, 55-64.	4.4	17
26	Preparation and characterization of silicon hydride oxide: a fully hydrophobic solid. Journal of Materials Chemistry, 2005, 15, 910.	6.7	15
27	Alumina supported Mo–V–Te–O catalysts for the ammoxidation of propane to acrylonitrile. Applied Catalysis A: General, 2008, 341, 119-126.	4.3	15
28	Surface Modification of H-Ferrierite by Reaction with Triethoxysilane. Journal of Physical Chemistry B, 2005, 109, 879-883.	2.6	13
29	In situ TG-MS study of NOx and soot removal over LNT model catalysts. Applied Catalysis A: General, 2016, 523, 193-199.	4.3	13
30	Advance in the scaling up of a hybrid catalyst for NSR-SCR coupled systems under H2O + CO2 atmosphere. Catalysis Today, 2020, 356, 292-300.	4.4	10
31	Biomass catalytic gasification performance over unsupported Ni e catalyst for highâ€yield hydrogen production. Biofuels, Bioproducts and Biorefining, 2020, 14, 20-29.	3.7	10
32	Hybrid Technology for DeNOxing by LNT-SCR System for Efficient Diesel Emission Control: Influence of Operation Parameters in H2O + CO2 Atmosphere. Catalysts, 2020, 10, 228.	3.5	9
33	Caâ€based bifunctional acidâ€basic modelâ€catalysts for n â€butanol production from ethanol condensation. Biofuels, Bioproducts and Biorefining, 2021, 15, 218-230.	3.7	7
34	lsotopic study of the influence of oxygen interaction and surface species over different catalysts on the soot removal mechanism. Catalysis Today, 2022, 384-386, 33-44.	4.4	7
35	Structured NSR-SCR hybrid catalytic technology: Influence of operational parameters on deNOx activity. Catalysis Today, 2022, 383, 287-298.	4.4	4
36	NiGa Unsupported Catalyst for CO ₂ Hydrogenation at Atmospheric Pressure. Tentative Reaction Pathways. Industrial & Engineering Chemistry Research, 2021, 60, 18891-18899.	3.7	4

LUIS J ALEMANY

#	Article	IF	CITATIONS
37	Catalytic activity in partial oxidation of methane and physico-chemical characterization of a VPO system obtained from boiler ash. Applied Catalysis B: Environmental, 1998, 16, 139-147.	20.2	3
38	Understanding of Soot Removal Mechanism over DeNOx-Catalysts as Passive Converters. Industrial & Engineering Chemistry Research, 2021, 60, 6501-6511.	3.7	2
39	Chapter 12. LNT Catalysts for the Simultaneous Removal of NOx and Soot: The DPNR Concept. RSC Catalysis Series, 2018, , 353-383.	0.1	2