Carmen Lammi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5950409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of the intestinal trans-epithelial transport and antioxidant activity of two hempseed peptides WVSPLAGRT (H2) and IGFLIIWV (H3). Food Research International, 2022, 152, 110720.	2.9	23
2	Hempseed (<i>Cannabis sativa</i>) Peptides WVSPLAGRT and IGFLIIWV Exert Anti-inflammatory Activity in the LPS-Stimulated Human Hepatic Cell Line. Journal of Agricultural and Food Chemistry, 2022, 70, 577-583.	2.4	20
3	Gel-Forming of Self-Assembling Peptides Functionalized with Food Bioactive Motifs Modulate DPP-IV and ACE Inhibitory Activity in Human Intestinal Caco-2 Cells. Biomedicines, 2022, 10, 330.	1.4	11
4	A <i>Lupinus angustifolius</i> protein hydrolysate exerts hypocholesterolemic effects in Western diet-fed ApoE ^{â^'/â''} mice through the modulation of LDLR and PCSK9 pathways. Food and Function, 2022, 13, 4158-4170.	2.1	15
5	Computational Design and Biological Evaluation of Analogs of Lupin Peptide P5 Endowed with Dual PCSK9/HMG-CoAR Inhibiting Activity. Pharmaceutics, 2022, 14, 665.	2.0	12
6	Impact of Soy β-Conglycinin Peptides on PCSK9 Protein Expression in HepG2 Cells. Nutrients, 2022, 14, 193.	1.7	9
7	Hempseed (Cannabis sativa) Peptide H3 (IGFLIIWV) Exerts Cholesterol-Lowering Effects in Human Hepatic Cell Line. Nutrients, 2022, 14, 1804.	1.7	11
8	Integrated Evaluation of the Multifunctional DPP-IV and ACE Inhibitory Effect of Soybean and Pea Protein Hydrolysates. Nutrients, 2022, 14, 2379.	1.7	7
9	Hempseed (Cannabis sativa) protein hydrolysates: A valuable source of bioactive peptides with pleiotropic health-promoting effects. Trends in Food Science and Technology, 2022, 127, 303-318.	7.8	16
10	Foodâ€derived antioxidants and COVIDâ€19. Journal of Food Biochemistry, 2021, 45, e13557.	1.2	56
11	Bioactive Cyclization Optimizes the Affinity of a Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Peptide Inhibitor. Journal of Medicinal Chemistry, 2021, 64, 2523-2533.	2.9	14
12	Engineered EGF-A Peptides with Improved Affinity for Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9). ACS Chemical Biology, 2021, 16, 429-439.	1.6	5
13	Extra Virgin Olive Oil Phenolic Extract on Human Hepatic HepG2 and Intestinal Caco-2 Cells: Assessment of the Antioxidant Activity and Intestinal Trans-Epithelial Transport. Antioxidants, 2021, 10, 118.	2.2	13
14	Nanostructure, Self-Assembly, Mechanical Properties, and Antioxidant Activity of a Lupin-Derived Peptide Hydrogel. Biomedicines, 2021, 9, 294.	1.4	11
15	Assessment of the Physicochemical and Conformational Changes of Ultrasound-Driven Proteins Extracted from Soybean Okara Byproduct. Foods, 2021, 10, 562.	1.9	20
16	Trans-Epithelial Transport, Metabolism, and Biological Activity Assessment of the Multi-Target Lupin Peptide LILPKHSDAD (P5) and Its Metabolite LPKHSDAD (P5-Met). Nutrients, 2021, 13, 863.	1.7	17
17	Increased Valency Improves Inhibitory Activity of Peptides Targeting Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9). ChemBioChem, 2021, 22, 2154-2160.	1.3	4
18	Investigation of Chlorella pyrenoidosa Protein as a Source of Novel Angiotensin I-Converting Enzyme (ACE) and Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides. Nutrients, 2021, 13, 1624.	1.7	17

CARMEN LAMMI

#	Article	IF	CITATIONS
19	Lupin-Derived Bioactive Peptides: Intestinal Transport, Bioavailability and Health Benefits. Nutrients, 2021, 13, 3266.	1.7	26
20	Application in nutrition: cholesterol-lowering activity. , 2021, , 551-568.		1
21	A heuristic, computer-driven and top-down approach to identify novel bioactive peptides: A proof-of-principle on angiotensin I converting enzyme inhibitory peptides. Food Research International, 2021, 150, 110753.	2.9	9
22	Characterization of the Trans-Epithelial Transport of Green Tea (C. sinensis) Catechin Extracts with In Vitro Inhibitory Effect against the SARS-CoV-2 Papain-like Protease Activity. Molecules, 2021, 26, 6744.	1.7	8
23	Exploring Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) Autoproteolysis Process by Molecular Simulations: Hints for Drug Design. ChemMedChem, 2020, 15, 1601-1607.	1.6	6
24	Phycobiliproteins from Arthrospira Platensis (Spirulina): A New Source of Peptides with Dipeptidyl Peptidase-IV Inhibitory Activity. Nutrients, 2020, 12, 794.	1.7	43
25	Assessment of the Multifunctional Behavior of Lupin Peptide P7 and Its Metabolite Using an Integrated Strategy. Journal of Agricultural and Food Chemistry, 2020, 68, 13179-13188.	2.4	24
26	"Bottom-Up―Strategy for the Identification of Novel Soybean Peptides with Angiotensin-Converting Enzyme Inhibitory Activity. Journal of Agricultural and Food Chemistry, 2020, 68, 2082-2090.	2.4	12
27	Extra Virgin Olive Oil Phenol Extracts Exert Hypocholesterolemic Effects through the Modulation of the LDLR Pathway: In Vitro and Cellular Mechanism of Action Elucidation. Nutrients, 2020, 12, 1723.	1.7	30
28	Lupin Peptide T9 (GQEQSHQDEGVIVR) Modulates the Mutant PCSK9D374Y Pathway: in vitro Characterization of its Dual Hypocholesterolemic Behavior. Nutrients, 2019, 11, 1665.	1.7	20
29	Recent Advances in Microalgae Peptides: Cardiovascular Health Benefits and Analysis. Journal of Agricultural and Food Chemistry, 2019, 67, 11825-11838.	2.4	33
30	Chemical and biological characterization of spirulina protein hydrolysates: Focus on ACE and DPP-IV activities modulation. Journal of Functional Foods, 2019, 63, 103592.	1.6	32
31	Computationally Driven Structure Optimization, Synthesis, and Biological Evaluation of Imidazole-Based Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 6163-6174.	2.9	29
32	A Supramolecular Approach to Develop New Soybean and Lupin Peptide Nanogels with Enhanced Dipeptidyl Peptidase IV (DPP-IV) Inhibitory Activity. Journal of Agricultural and Food Chemistry, 2019, 67, 3615-3623.	2.4	18
33	Soybean Peptides Exert Multifunctional Bioactivity Modulating 3-Hydroxy-3-Methylglutaryl-CoA Reductase and Dipeptidyl Peptidase-IV Targets in Vitro. Journal of Agricultural and Food Chemistry, 2019, 67, 4824-4830.	2.4	24
34	Biological Characterization of Computationally Designed Analogs of peptide TVFTSWEEYLDWV (Pep2-8) with Increased PCSK9 Antagonistic Activity. Scientific Reports, 2019, 9, 2343.	1.6	15
35	Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. Journal of Functional Foods, 2019, 55, 135-145.	1.6	110
36	Inhibition of PCSK9 ^{D374Y} /LDLR Protein–Protein Interaction by Computationally Designed T9 Lupin Peptide. ACS Medicinal Chemistry Letters, 2019, 10, 425-430.	1.3	22

CARMEN LAMMI

#	Article	IF	CITATIONS
37	YDFYPSSTKDQQS (P3), a peptide from lupin protein, absorbed by Caco-2 cells, modulates cholesterol metabolism in HepG2 cells via SREBP-1 activation. Journal of Food Biochemistry, 2018, 42, e12524.	1.2	13
38	Structure-based drug design, synthesis and biological assays of P. falciparum Atg3–Atg8 protein–protein interaction inhibitors. Journal of Computer-Aided Molecular Design, 2018, 32, 473-486.	1.3	9
39	Potent Antiglioblastoma Agents by Hybridizing the Onium-Alkyloxy-Stilbene Based Structures of an α7-nAChR, α9-nAChR Antagonist and of a Pro-Oxidant Mitocan. Journal of Medicinal Chemistry, 2018, 61, 10531-10544.	2.9	21
40	First Food-Derived Peptide Inhibitor of the Protein–Protein Interaction between Gain-of-Function PCSK9 ^{D374Y} and the Low-Density Lipoprotein Receptor. Journal of Agricultural and Food Chemistry, 2018, 66, 10552-10557.	2.4	20
41	Behavior of three hypocholesterolemic peptides from soy protein in an intestinal model based on differentiated Caco-2 cell. Journal of Functional Foods, 2018, 45, 363-370.	1.6	44
42	Soybean- and Lupin-Derived Peptides Inhibit DPP-IV Activity on In Situ Human Intestinal Caco-2 Cells and Ex Vivo Human Serum. Nutrients, 2018, 10, 1082.	1.7	75
43	Enhancement of the Stability and Anti-DPPIV Activity of Hempseed Hydrolysates Through Self-Assembling Peptide-Based Hydrogels. Frontiers in Chemistry, 2018, 6, 670.	1.8	40
44	Investigations on the hypocholesterolaemic activity of LILPKHSDAD and LTFPGSAED, two peptides from lupin β-conglutin: Focus on LDLR and PCSK9 pathways. Journal of Functional Foods, 2017, 32, 1-8.	1.6	49
45	Hempseed Peptides Exert Hypocholesterolemic Effects with a Statin-Like Mechanism. Journal of Agricultural and Food Chemistry, 2017, 65, 8829-8838.	2.4	57
46	Effects of a lupin protein concentrate on lipids, blood pressure and insulin resistance in moderately dyslipidaemic patients: A randomised controlled trial. Journal of Functional Foods, 2017, 37, 8-15.	1.6	22
47	Exploration of Potentially Bioactive Peptides Generated from the Enzymatic Hydrolysis of Hempseed Proteins. Journal of Agricultural and Food Chemistry, 2017, 65, 10174-10184.	2.4	70
48	Hypocholesterolaemic Activity of Lupin Peptides: Investigation on the Crosstalk between Human Enterocytes and Hepatocytes Using a Co-Culture System Including Caco-2 and HepG2 Cells. Nutrients, 2016, 8, 437.	1.7	31
49	Peptides Derived from Soy and Lupin Protein as Dipeptidyl-Peptidase IV Inhibitors: <i>In Vitro</i> Biochemical Screening and <i>in Silico</i> Molecular Modeling Study. Journal of Agricultural and Food Chemistry, 2016, 64, 9601-9606.	2.4	100
50	Lupin protein exerts cholesterol-lowering effects targeting PCSK9: From clinical evidences to elucidation of the in vitro molecular mechanism using HepG2 cells. Journal of Functional Foods, 2016, 23, 230-240.	1.6	36
51	A multidisciplinary investigation on the bioavailability and activity of peptides from lupin protein. Journal of Functional Foods, 2016, 24, 297-306.	1.6	66
52	Disrupting the PCSK9/LDLR protein–protein interaction by an imidazole-based minimalist peptidomimetic. Organic and Biomolecular Chemistry, 2016, 14, 9736-9740.	1.5	42
53	Lupin Peptides Modulate the Protein-Protein Interaction of PCSK9 with the Low Density Lipoprotein Receptor in HepG2 Cells. Scientific Reports, 2016, 6, 29931.	1.6	69
54	Three Peptides from Soy Glycinin Modulate Glucose Metabolism in Human Hepatic HepG2 Cells. International Journal of Molecular Sciences, 2015, 16, 27362-27370.	1.8	54

CARMEN LAMMI

#	Article	IF	CITATIONS
55	IAVPGEVA, IAVPTGVA, and LPYP, three peptides from soy glycinin, modulate cholesterol metabolism in HepG2 cells through the activation of the LDLR-SREBP2 pathway. Journal of Functional Foods, 2015, 14, 469-478.	1.6	100
56	Two Peptides from Soy β-Conglycinin Induce a Hypocholesterolemic Effect in HepG2 Cells by a Statin-Like Mechanism: Comparative in Vitro and in Silico Modeling Studies. Journal of Agricultural and Food Chemistry, 2015, 63, 7945-7951.	2.4	71
57	The health benefits of sweet lupin seed flours and isolated proteins. Journal of Functional Foods, 2015, 18, 550-563.	1.6	116
58	The Role of Grain Legumes in the Prevention of Hypercholesterolemia and Hypertension. Critical Reviews in Plant Sciences, 2015, 34, 144-168.	2.7	73
59	A simple and high-throughput in-cell Western assay using HepG2 cell line for investigating the potential hypocholesterolemic effects of food components and nutraceutics. Food Chemistry, 2015, 169, 59-64.	4.2	17
60	Lupin Peptides Lower Low-Density Lipoprotein (LDL) Cholesterol through an Up-regulation of the LDL Receptor/Sterol Regulatory Element Binding Protein 2 (SREBP2) Pathway at HepG2 Cell Line. Journal of Agricultural and Food Chemistry, 2014, 62, 7151-7159.	2.4	90