
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5950013/publications.pdf Version: 2024-02-01

7HEN LI

#	Article	IF	CITATIONS
1	The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nature Communications, 2018, 9, 840.	12.8	764
2	Molecular Packing: Another Key Point for the Performance of Organic and Polymeric Optoelectronic Materials. Accounts of Chemical Research, 2020, 53, 962-973.	15.6	545
3	Molecular conformation and packing: their critical roles in the emission performance of mechanochromic fluorescence materials. Materials Chemistry Frontiers, 2017, 1, 2174-2194.	5.9	477
4	How the Molecular Packing Affects the Room Temperature Phosphorescence in Pure Organic Compounds: Ingenious Molecular Design, Detailed Crystal Analysis, and Rational Theoretical Calculations. Advanced Materials, 2017, 29, 1606829.	21.0	351
5	Organic luminescent materials: The concentration on aggregates from aggregationâ€induced emission. Aggregate, 2020, 1, 6-18.	9.9	288
6	Roomâ€Temperature Phosphorescence Resonance Energy Transfer for Construction of Nearâ€Infrared Afterglow Imaging Agents. Advanced Materials, 2020, 32, e2006752.	21.0	265
7	AlEgen with Fluorescence–Phosphorescence Dual Mechanoluminescence at Room Temperature. Angewandte Chemie - International Edition, 2017, 56, 880-884.	13.8	250
8	A stable tetraphenylethene derivative: aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties. Materials Horizons, 2016, 3, 220-225.	12.2	228
9	Highly Selective Reduction of CO ₂ to C ₂₊ Hydrocarbons at Copper/Polyaniline Interfaces. ACS Catalysis, 2020, 10, 4103-4111.	11.2	220
10	Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons. Nature Communications, 2019, 10, 5161.	12.8	216
11	Elucidating the Excited State of Mechanoluminescence in Organic Luminogens with Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2017, 56, 15299-15303.	13.8	215
12	Blue AlEgens: approaches to control the intramolecular conjugation and the optimized performance of OLED devices. Journal of Materials Chemistry C, 2016, 4, 2663-2684.	5.5	214
13	Fluorescence of Nonaromatic Organic Systems and Room Temperature Phosphorescence of Organic Luminogens: The Intrinsic Principle and Recent Progress. Small, 2018, 14, e1801560.	10.0	204
14	Visible/Near-Infrared-Light-Induced H ₂ Production over g-C ₃ N ₄ Co-sensitized by Organic Dye and Zinc Phthalocyanine Derivative. ACS Catalysis, 2015, 5, 504-510.	11.2	203
15	Construction of LRET-Based Nanoprobe Using Upconversion Nanoparticles with Confined Emitters and Bared Surface as Luminophore. Journal of the American Chemical Society, 2015, 137, 3421-3427.	13.7	187
16	Abnormal room temperature phosphorescence of purely organic boron-containing compounds: the relationship between the emissive behaviorand the molecular packing, and the potential related applications. Chemical Science, 2017, 8, 8336-8344.	7.4	176
17	A Rationally Designed Upconversion Nanoprobe for <i>in Vivo</i> Detection of Hydroxyl Radical. Journal of the American Chemical Society, 2015, 137, 11179-11185.	13.7	170
18	Molecular Conformationâ€Dependent Mechanoluminescence: Same Mechanical Stimulus but Different Emissive Color over Time. Angewandte Chemie - International Edition, 2018, 57, 14174-14178.	13.8	170

#	Article	IF	CITATIONS
19	Three polymorphs of one luminogen: how the molecular packing affects the RTP and AIE properties?. Journal of Materials Chemistry C, 2017, 5, 9242-9246.	5.5	164
20	New tetraphenylethene-based efficient blue luminophors: aggregation induced emission and partially controllable emitting color. Journal of Materials Chemistry, 2012, 22, 2478-2484.	6.7	162
21	A Mitochondrial-Targeting Near-Infrared Fluorescent Probe for Visualizing and Monitoring Viscosity in Live Cells and Tissues. Analytical Chemistry, 2019, 91, 10302-10309.	6.5	154
22	A Red Emissive Twoâ€Photon Fluorescence Probe Based on Carbon Dots for Intracellular pH Detection. Small, 2019, 15, e1901673.	10.0	150
23	Near-Infrared Light-Responsive Hydrogel for Specific Recognition and Photothermal Site-Release of Circulating Tumor Cells. ACS Nano, 2016, 10, 6201-6210.	14.6	146
24	From ACQ to AIE: the suppression of the strong ̈E–Ĩ€ interaction of naphthalene diimide derivatives through the adjustment of their flexible chains. Chemical Communications, 2016, 52, 11496-11499.	4.1	145
25	Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond. Materials Chemistry Frontiers, 2018, 2, 2124-2129.	5.9	138
26	Blue Aggregationâ€Induced Emission Luminogens: High External Quantum Efficiencies Up to 3.99% in LED Device, and Restriction of the Conjugation Length through Rational Molecular Design. Advanced Functional Materials, 2014, 24, 7645-7654.	14.9	137
27	Novel Functional Conjugative Hyperbranched Polymers with Aggregationâ€Induced Emission: Synthesis Through Oneâ€Pot "A ₂ +B ₄ ―Polymerization and Application as Explosive Chemsensors and PLEDs. Macromolecular Rapid Communications, 2012, 33, 164-171.	3.9	135
28	Blue pyrene-based AlEgens: inhibited intermolecular π–π stacking through the introduction of substituents with controllable intramolecular conjugation, and high external quantum efficiencies up to 3.46% in non-doped OLEDs. Materials Chemistry Frontiers, 2017, 1, 91-99.	5.9	135
29	Enhanced Hole Transportation for Inverted Tinâ€Based Perovskite Solar Cells with High Performance and Stability. Advanced Functional Materials, 2019, 29, 1808059.	14.9	133
30	A conjugated hyperbranched polymer constructed from carbazole and tetraphenylethylene moieties: convenient synthesis through one-pot "A2 + B4―Suzuki polymerization, aggregation-induced enhanced emission, and application as explosive chemosensors and PLEDs. Journal of Materials Chemistry, 2012, 22, 6374.	6.7	132
31	The Influence of Molecular Packing on the Emissive Behavior of Pyrene Derivatives: Mechanoluminescence and Mechanochromism. Advanced Optical Materials, 2018, 6, 1800198.	7.3	125
32	Construction of efficient blue AIE emitters with triphenylamine and TPE moieties for non-doped OLEDs. Journal of Materials Chemistry C, 2014, 2, 2028.	5.5	122
33	Dopantâ€Free Squaraineâ€Based Polymeric Holeâ€Transporting Materials with Comprehensive Passivation Effects for Efficient Allâ€Inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 17724-17730.	13.8	118
34	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	5.9	117
35	Mechanoluminescence or Roomâ€Temperature Phosphorescence: Molecular Packingâ€Dependent Emission Response. Angewandte Chemie - International Edition, 2019, 58, 17297-17302.	13.8	116
36	Convenient preparation of CsSnI ₃ quantum dots, excellent stability, and the highest performance of lead-free inorganic perovskite solar cells so far. Journal of Materials Chemistry A, 2019, 7, 7683-7690.	10.3	116

#	Article	IF	CITATIONS
37	An N-nitrosation reactivity-based two-photon fluorescent probe for the specific in situ detection of nitric oxide. Chemical Science, 2017, 8, 4533-4538.	7.4	115
38	Benzene-cored fluorophors with TPE peripheries: facile synthesis, crystallization-induced blue-shifted emission, and efficient blue luminogens for non-doped OLEDs. Journal of Materials Chemistry, 2012, 22, 12001.	6.7	114
39	NIR in, far-red out: developing a two-photon fluorescent probe for tracking nitric oxide in deep tissue. Chemical Science, 2016, 7, 5230-5235.	7.4	114
40	"Turn-On―Fluorescent Probe for Mercury(II): High Selectivity and Sensitivity and New Design Approach by the Adjustment of the π-Bridge. ACS Applied Materials & Interfaces, 2015, 7, 11369-11376.	8.0	113
41	Host–guest materials with room temperature phosphorescence: Tunable emission color and thermal printing patterns. SmartMat, 2020, 1, e1006.	10.7	112
42	Bromine‣ubstituted Fluorene: Molecular Structure, Br–Br Interactions, Roomâ€Temperature Phosphorescence, and Tricolor Triboluminescence. Angewandte Chemie - International Edition, 2018, 57, 16821-16826.	13.8	111
43	Enzyme-Responsive Bioprobes Based on the Mechanism of Aggregation-Induced Emission. ACS Applied Materials & Interfaces, 2018, 10, 12278-12294.	8.0	109
44	9,9â€Dimethylxanthene Derivatives with Roomâ€Temperature Phosphorescence: Substituent Effects and Emissive Properties. Angewandte Chemie - International Edition, 2020, 59, 9946-9951.	13.8	109
45	Portable Upconversion Nanoparticles-Based Paper Device for Field Testing of Drug Abuse. Analytical Chemistry, 2016, 88, 1530-1534.	6.5	107
46	Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. Journal of Materials Chemistry A, 2019, 7, 25088-25101.	10.3	107
47	Tunable Aggregation-Induced Emission Nanoparticles by Varying Isolation Groups in Perylene Diimide Derivatives and Application in Three-Photon Fluorescence Bioimaging. ACS Nano, 2018, 12, 9532-9540.	14.6	106
48	Triphenylamine derivatives: different molecular packing and the corresponding mechanoluminescent or mechanochromism property. Journal of Materials Chemistry C, 2017, 5, 9879-9885.	5.5	103
49	Engineering NIR-IIb fluorescence of Er-based lanthanide nanoparticles for through-skull targeted imaging and imaging-guided surgery of orthotopic glioma. Nano Today, 2020, 34, 100905.	11.9	100
50	Stimulusâ€responsive room temperature phosphorescence in purely organic luminogens. InformaÄnÃ- Materiály, 2020, 2, 791-806.	17.3	100
51	Interface-Enhanced Catalytic Selectivity on the C ₂ Products of CO ₂ Electroreduction. ACS Catalysis, 2021, 11, 2473-2482.	11.2	92
52	AlEgen with Fluorescence–Phosphorescence Dual Mechanoluminescence at Room Temperature. Angewandte Chemie, 2017, 129, 898-902.	2.0	90
53	Breaking Through the Signal-to-Background Limit of Upconversion Nanoprobes Using a Target-Modulated Sensitizing Switch. Journal of the American Chemical Society, 2018, 140, 14696-14703.	13.7	89
54	Polyphenylbenzene as a Platform for Deep-Blue OLEDs: Aggregation Enhanced Emission and High External Quantum Efficiency of 3.98%. Chemistry of Materials, 2015, 27, 1847-1854.	6.7	88

#	Article	IF	CITATIONS
55	Lighting Up NIR-II Fluorescence in Vivo: An Activable Probe for Noninvasive Hydroxyl Radical Imaging. Analytical Chemistry, 2019, 91, 15757-15762.	6.5	88
56	Aggregationâ€induced emission: Red and nearâ€infrared organic lightâ€emitting diodes. SmartMat, 2021, 2, 326-346.	10.7	88
57	High performance organic sensitizers based on 11,12-bis(hexyloxy) dibenzo[a,c]phenazine for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 18830.	6.7	86
58	Benzene-cored AlEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect. Chemical Science, 2016, 7, 4355-4363.	7.4	85
59	New Phenothiazine Derivatives That Exhibit Photoinduced Roomâ€Temperature Phosphorescence. Advanced Functional Materials, 2021, 31, 2101719.	14.9	84
60	Modification of the Intermediate Binding Energies on Ni/Ni ₃ N Heterostructure for Enhanced Alkaline Hydrogen Oxidation Reaction. Advanced Functional Materials, 2021, 31, 2106156.	14.9	84
61	Novel AIE-active ratiometric fluorescent probes for mercury(<scp>ii</scp>) based on the Hg ²⁺ -promoted deprotection of thioketal, and good mechanochromic properties. Journal of Materials Chemistry C, 2018, 6, 773-780.	5.5	82
62	Novel pyrrole-based dyes for dye-sensitized solar cells: From rod-shape to "H―type. Journal of Materials Chemistry, 2012, 22, 6689.	6.7	81
63	Rational Molecular Design for Efficient Exciton Harvesting, and Deepâ€Blue OLED Application. Advanced Optical Materials, 2018, 6, 1800342.	7.3	80
64	Mobile Phone Flashlightâ€Excited Red Afterglow Bioimaging. Advanced Materials, 2022, 34, e2201280.	21.0	79
65	Miracles of molecular uniting. Science China Materials, 2020, 63, 177-184.	6.3	77
66	Elucidating the Excited State of Mechanoluminescence in Organic Luminogens with Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2017, 129, 15501-15505.	2.0	75
67	Novel global-like second-order nonlinear optical dendrimers: convenient synthesis through powerful click chemistry and large NLO effects achieved by using simple azo chromophore. Chemical Science, 2012, 3, 1256.	7.4	70
68	Construction of high strength hollow fibers by self-assembly of a stiff polysaccharide with short branches in water. Journal of Materials Chemistry A, 2013, 1, 4198.	10.3	69
69	New AlEgens containing tetraphenylethene and silole moieties: tunable intramolecular conjugation, aggregation-induced emission characteristics and good device performance. Journal of Materials Chemistry C, 2015, 3, 2624-2631.	5.5	67
70	9,9â€Dimethylxanthene Derivatives with Roomâ€Temperature Phosphorescence: Substituent Effects and Emissive Properties. Angewandte Chemie, 2020, 132, 10032-10037.	2.0	66
71	Multiple Luminescence Responses towards Mechanical Stimulus and Photoâ€Induction: The Key Role of the Stuck Packing Mode and Tunable Intermolecular Interactions. Chemistry - A European Journal, 2019, 25, 7031-7037.	3.3	64
72	Merocyanine with Hole-Transporting Ability and Efficient Defect Passivation Effect for Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 869-876.	17.4	64

#	Article	IF	CITATIONS
73	Thermally Activated Delayed Fluorescent Polymers. Journal of Polymer Science Part A, 2017, 55, 575-584.	2.3	62
74	New Azo Chromophoreâ€Containing Conjugated Polymers: Facile Synthesis by Using "Click―Chemistry and Enhanced Nonlinear Optical Properties Through the Introduction of Suitable Isolation Groups. Macromolecular Rapid Communications, 2008, 29, 136-141.	3.9	61
75	Photoresponsive immunomagnetic nanocarrier for capture and release of rare circulating tumor cells. Chemical Science, 2015, 6, 6432-6438.	7.4	60
76	AIE probes towards biomolecules: the improved selectivity with the aid of graphene oxide. Science China Chemistry, 2015, 58, 1800-1809.	8.2	59
77	Janus second-order nonlinear optical dendrimers: their controllable molecular topology and corresponding largely enhanced performance. Chemical Science, 2017, 8, 340-347.	7.4	59
78	Facile-Effective Hole-Transporting Materials Based on Dibenzo[<i>a</i> , <i>c</i>]carbazole: The Key Role of Linkage Position to Photovoltaic Performance of Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 2514-2521.	17.4	59
79	Materials for Interfaces in Organic Solar Cells and Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 3301-3326.	8.0	59
80	Precise Regulation of Distance between Associated Pyrene Units and Control of Emission Energy and Kinetics in Solid State. CCS Chemistry, 2021, 3, 274-286.	7.8	58
81	New PVKâ€based nonlinear optical polymers: Enhanced nonlinearity and improved transparency. Journal of Polymer Science Part A, 2008, 46, 2983-2993.	2.3	57
82	Recyclable mechanoluminescent luminogen: different polymorphs, different self-assembly effects of the thiophene moiety and recovered molecular packing <i>via</i> simple thermal-treatment. Materials Chemistry Frontiers, 2019, 3, 32-38.	5.9	57
83	Functionalized polyacetylenes with strong luminescence: "turn-on―fluorescent detection of cyanide based on the dissolution of gold nanoparticles and its application in real samples. Journal of Materials Chemistry, 2012, 22, 5581.	6.7	55
84	Pyrene-based blue AlEgens: tunable intramolecular conjugation, good hole mobility and reversible mechanochromism. Journal of Materials Chemistry C, 2016, 4, 8506-8513.	5.5	55
85	Progress of pyrene-based organic semiconductor in organic field effect transistors. Science China Chemistry, 2016, 59, 1623-1631.	8.2	52
86	Similar or Totally Different: the Adjustment of the Twist Conformation Through Minor Structural Modification, and Dramatically Improved Performance for Dyeâ€Sensitized Solar Cell. Advanced Energy Materials, 2015, 5, 1500846.	19.5	51
87	Removing the Obstacle of Dyeâ€Sensitized Upconversion Luminescence in Aqueous Phase to Achieve Highâ€Contrast Deep Imaging In Vivo. Advanced Functional Materials, 2020, 30, 1910765.	14.9	51
88	The Progress of Circularly Polarized Luminescence in Chiral Purely Organic Materials. Advanced Photonics Research, 2021, 2, 2000136.	3.6	51
89	Holeâ€Transporting Materials for Perovskite Solar Cells. Asian Journal of Organic Chemistry, 2018, 7, 2182-2200.	2.7	49
90	In Situ Imaging of Cysteine in the Brains of Mice with Epilepsy by a Near-Infrared Emissive Fluorescent Probe. Analytical Chemistry, 2020, 92, 2802-2808.	6.5	49

#	Article	IF	CITATIONS
91	Reaction-based conjugated polymer fluorescent probe for mercury(<scp>ii</scp>): good sensing performance with "turn-on―signal output. Polymer Chemistry, 2017, 8, 2221-2226.	3.9	48
92	Roomâ€Temperature Phosphorescence Invoked Through Norbornylâ€Driven Intermolecular Interaction Intensification with Anomalous Reversible Solidâ€State Photochromism. Angewandte Chemie - International Edition, 2020, 59, 20161-20166.	13.8	47
93	A pseudo-two-dimensional conjugated polysquaraine: an efficient p-type polymer semiconductor for organic photovoltaics and perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 13644-13651.	10.3	47
94	New series of AB ₂ â€type hyperbranched polytriazoles derived from the same polymeric intermediate: Different endcapping spacers with adjustable bulk and convenient syntheses via click chemistry under copper(l) catalysis. Journal of Polymer Science Part A, 2011, 49, 1977-1987.	2.3	45
95	Hole Transport Materials Based on 6,12â€Dihydroindeno[1,2â€b]fluorine with Different Periphery Groups: A New Strategy for Dopantâ€Free Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1901296.	14.9	45
96	Second-order nonlinear optical dendrimers containing different types of isolation groups: convenient synthesis through powerful "click chemistry―and large NLO effects. Journal of Materials Chemistry C, 2013, 1, 717-728.	5.5	44
97	Tetraphenylcyclopentadiene Derivatives: Aggregationâ€Induced Emission, Adjustable Luminescence from Green to Blue, Efficient Undoped OLED Performance and Good Mechanochromic Properties. Small, 2016, 12, 6623-6632.	10.0	44
98	Halogen ontaining TPAâ€Based Luminogens: Different Molecular Packing and Different Mechanoluminescence. Advanced Optical Materials, 2019, 7, 1900505.	7.3	43
99	Partially Controlling Molecular Packing to Achieve Off–On Mechanochromism through Ingenious Molecular Design. Advanced Optical Materials, 2020, 8, 1902036.	7.3	43
100	Aromatic/perfluoroaromatic self-assembly effect: an effective strategy to improve the NLO effect. Journal of Materials Chemistry, 2012, 22, 18486.	6.7	42
101	A relay strategy for the mercury (II) chemodosimeter with ultra-sensitivity as test strips. Scientific Reports, 2015, 5, 15987.	3.3	42
102	Second-Order Nonlinear Optical Dendrimers and Dendronized Hyperbranched Polymers. Chemical Record, 2017, 17, 71-89.	5.8	42
103	Molecular Uniting Set Identified Characteristic (<scp>MUSIC</scp>) of Organic Optoelectronic Material. Chinese Journal of Chemistry, 2022, 40, 2356-2370.	4.9	42
104	How the linkage positions affect the performance of bulk-heterojunction polymer solar cells. Journal of Materials Chemistry, 2012, 22, 12523.	6.7	41
105	The marriage of AIE and interface engineering: convenient synthesis and enhanced photovoltaic performance. Chemical Science, 2017, 8, 3750-3758.	7.4	41
106	To form AIE product with the target analyte: A new strategy for excellent fluorescent probes, and convenient detection of hydrazine in seconds with test strips. Science China Chemistry, 2017, 60, 1596-1601.	8.2	41
107	Structural Design of Blueâ€ŧoâ€Red Thermallyâ€Activated Delayed Fluorescence Molecules by Adjusting the Strength between Donor and Acceptor. Asian Journal of Organic Chemistry, 2020, 9, 1262-1276.	2.7	41
108	Room temperature phosphorescence achieved by aromatic/perfluoroaromatic interactions. Science China Chemistry, 2022, 65, 918-925.	8.2	41

#	Article	IF	CITATIONS
109	Influences of Conjugation Extent on the Aggregationâ€Induced Emission Quantum Efficiency in Silole Derivatives: A Computational Study. Chemistry - an Asian Journal, 2015, 10, 2154-2161.	3.3	40
110	Dendronized hyperbranched polymers containing isolation chromophores: design, synthesis and further enhancement of the comprehensive NLO performance. Polymer Chemistry, 2015, 6, 5580-5589.	3.9	40
111	A new polyfluorene bearing pyridine moieties: a sensitive fluorescent chemosensor for metal ions and cyanide. Polymer Chemistry, 2012, 3, 1446.	3.9	39
112	Molecular Conformationâ€Dependent Mechanoluminescence: Same Mechanical Stimulus but Different Emissive Color over Time. Angewandte Chemie, 2018, 130, 14370-14374.	2.0	39
113	Phenanthroimidazole derivatives with minor structural differences: crystalline polymorphisms, different molecular packing, and totally different mechanoluminescence. Journal of Materials Chemistry C, 2019, 7, 13759-13763.	5.5	39
114	Insight from the old: mechanochromism and mechanoluminescence of two amine-containing tetraphenylethylene isomers. Journal of Materials Chemistry C, 2019, 7, 11790-11796.	5.5	38
115	New hyperbranched polyaryleneethynylene containing azobenzenechromophore moieties in the main chain: facile synthesis, large optical nonlinearity and high thermal stability. Polymer Chemistry, 2010, 1, 78-81.	3.9	37
116	A highly sensitive and selective fluorescent probe for hypochlorite in pure water with aggregation induced emission characteristics. Faraday Discussions, 2017, 196, 427-438.	3.2	37
117	Upconversion System with Quantum Dots as Sensitizer: Improved Photoluminescence and PDT Efficiency. ACS Applied Materials & amp; Interfaces, 2019, 11, 41100-41108.	8.0	37
118	Intermolecular electronic coupling of 9-methyl-9H-dibenzo[a,[c] carbazole for strong emission in aggregated state by substituent effect. Science China Chemistry, 2020, 63, 1435-1442.	8.2	36
119	Modulating the Luminescence of Upconversion Nanoparticles with Heavy Metal Ions: A New Strategy for Probe Design. Analytical Chemistry, 2016, 88, 9989-9995.	6.5	35
120	Visualizing Oxidative Stress Level for Timely Assessment of Ischemic Stroke <i>via</i> a Ratiometric Near-Infrared-II Luminescent Nanoprobe. ACS Nano, 2021, 15, 11940-11952.	14.6	35
121	Synthesis and characterization of a new disubstituted polyacetylene containing indolylazo moieties in side chains. Journal of Polymer Science Part A, 2006, 44, 5672-5681.	2.3	34
122	New second-order nonlinear optical (NLO) hyperbranched polymers containing isolation chromophore moieties derived from one-pot "A2 + B4―approach via Suzuki coupling reaction. RSC Advances, 2012, 2, 6520.	3.6	34
123	Water-soluble graphene sheets with large optical limiting response via non-covalent functionalization with polyacetylenes. Journal of Materials Chemistry, 2012, 22, 22624.	6.7	34
124	Halogen-substituted triphenylamine derivatives with intense mechanoluminescence properties. Journal of Materials Chemistry C, 2019, 7, 12256-12262.	5.5	34
125	Assemblyâ€Induced Emission of Cellulose Nanocrystals for Hiding Information. Particle and Particle Systems Characterization, 2019, 36, 1800412.	2.3	34
126	The influence of intermolecular interactions and molecular packings on mechanochromism and mechanoluminescence – a tetraphenylethylene derivative case. Journal of Materials Chemistry C, 2019, 7, 12709-12716.	5.5	34

#	Article	IF	CITATIONS
127	Monitoring Neuroinflammation with an HOCl-Activatable and Blood–Brain Barrier Permeable Upconversion Nanoprobe. Analytical Chemistry, 2020, 92, 5569-5576.	6.5	34
128	The introduction of conjugated isolation groups into the common acceptor cyanoacrylic acid: an efficient strategy to suppress the charge recombination in dye sensitized solar cells and the dramatically improved efficiency from 5.89% to 9.44%. Journal of Materials Chemistry A, 2016, 4, 16403-16409.	10.3	33
129	Organic luminogens bearing alkyl substituents: design flexibility, adjustable molecular packing, and optimized performance. Materials Chemistry Frontiers, 2021, 5, 1525-1540.	5.9	33
130	Triphenylamine-based ï€-conjugated dendrimers: convenient synthesis, easy solution processability, and good hole-transporting properties. Journal of Materials Chemistry C, 2015, 3, 2016-2023.	5.5	32
131	Polyurethanes Containing Indoleâ€Based Nonâ€Linear Optical Chromophores: from Linear Chromophore to Hâ€Type. Macromolecular Rapid Communications, 2008, 29, 798-803.	3.9	31
132	New hyperbranched secondâ€order nonlinear optical poly(aryleneâ€ethynylene)s containing pentafluoroaromatic rings as isolation group: Facile synthesis and enhanced optical nonlinearity through Arâ€Ar ^F selfâ€assembly effect. Journal of Polymer Science Part A, 2012, 50, 5124-5133.	2.3	31
133	Synthesis, characterization and photovoltaic performances of D–A copolymers based on BDT and DBPz: the largely improved performance caused by additional thiophene blocks. Journal of Materials Chemistry A, 2013, 1, 4508.	10.3	31
134	New "X-type―second-order nonlinear optical (NLO) dendrimers: fewer chromophore moieties and high NLO effects. Journal of Materials Chemistry C, 2015, 3, 4545-4552.	5.5	31
135	Functionalization of graphene by tetraphenylethylene using nitrene chemistry. RSC Advances, 2012, 2, 7042.	3.6	28
136	Different Effect of the Additional Electron-Withdrawing Cyano Group in Different Conjugation Bridge: The Adjusted Molecular Energy Levels and Largely Improved Photovoltaic Performance. ACS Applied Materials & Interfaces, 2016, 8, 12134-12140.	8.0	28
137	Organic Dyes based on Tetraarylâ€1,4â€dihydropyrroloâ€{3,2â€ <i>b</i>]pyrroles for Photovoltaic and Photocatalysis Applications with the Suppressed Electron Recombination. Chemistry - A European Journal, 2018, 24, 18032-18042.	3.3	28
138	Janus molecules: large second-order nonlinear optical performance, good temporal stability, excellent thermal stability and spherical structure with optimized dendrimer structure. Materials Chemistry Frontiers, 2018, 2, 1374-1382.	5.9	28
139	Perylene diimide-based cathode interfacial materials: adjustable molecular structures and conformation, optimized film morphology, and much improved performance of non-fullerene polymer solar cells. Materials Chemistry Frontiers, 2019, 3, 1840-1848.	5.9	28
140	Cyanineâ€Doped Lanthanide Metal–Organic Frameworks for Nearâ€Infrared II Bioimaging. Advanced Science, 2022, 9, e2104561.	11.2	28
141	New indoleâ€containing luminophores: convenient synthesis and aggregationâ€induced emission enhancement. Journal of Physical Organic Chemistry, 2009, 22, 241-246.	1.9	27
142	Ar–Ar ^F Selfâ€Assembly of Starâ€Shaped Secondâ€Order Nonlinear Optical Chromophores Achieving Large Macroscopic Nonlinearities. Advanced Electronic Materials, 2017, 3, 1700138.	5.1	27
143	Pyrene-fused PDI based ternary solar cells: high power conversion efficiency over 10%, and improved device thermal stability. Materials Chemistry Frontiers, 2019, 3, 93-102.	5.9	27
144	Similar or different: the same Spiro-core but different alkyl chains with apparently improved device performance of perovskite solar cells. Science China Chemistry, 2019, 62, 739-745.	8.2	27

#	Article	IF	CITATIONS
145	Strategies for Constructing Upconversion Luminescence Nanoprobes to Improve Signal Contrast. Small, 2020, 16, e1905084.	10.0	27
146	Dye-Sensitized Rare Earth-Doped Nanoparticles with Boosted NIR-IIb Emission for Dynamic Imaging of Vascular Network-Related Disorders. ACS Applied Materials & amp; Interfaces, 2021, 13, 29303-29312.	8.0	27
147	Copolymer of Fluorene and Triphenylamine Moieties: Direct and Postâ€Functionalization Strategy, Structural Characterization, and Chemosensoring Behavior. Macromolecular Chemistry and Physics, 2010, 211, 18-26.	2.2	26
148	A series of AB2-type second-order nonlinear optical (NLO) polyaryleneethynylenes: using different end-capped spacers with adjustable bulk to achieve high NLO coefficients. Polymer Chemistry, 2013, 4, 2361.	3.9	26
149	Bromine‣ubstituted Fluorene: Molecular Structure, Br–Br Interactions, Roomâ€Temperature Phosphorescence, and Tricolor Triboluminescence. Angewandte Chemie, 2018, 130, 17063-17068.	2.0	26
150	Mechanoluminescence or Roomâ€Temperature Phosphorescence: Molecular Packingâ€Dependent Emission Response. Angewandte Chemie, 2019, 131, 17457-17462.	2.0	26
151	Multi-photoresponsive triphenylethylene derivatives with photochromism, photodeformation and room temperature phosphorescence. Materials Horizons, 2022, 9, 368-375.	12.2	26
152	New chemosensory materials based on disubstituted polyacetylene with strong green fluorescence. Journal of Polymer Science Part A, 2008, 46, 8070-8080.	2.3	25
153	Efficient Metalâ€Free Organic Sensitizers Containing Tetraphenylethylene Moieties in the Donor Part for Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2012, 2012, 5248-5255.	2.4	25
154	Synthesis of a cyclen-containing disubstituted polyacetylene with strong green photoluminescence and its application as a sensitive chemosensor towards sulfide anion with good selectivity and high sensitivity. Polymer Chemistry, 2014, 5, 2041-2049.	3.9	25
155	Further improvement of the macroscopic NLO coefficient and optical transparency of hyperbranched polymers by enhancing the degree of branching. Polymer Chemistry, 2014, 5, 5100.	3.9	25
156	A Reactionâ€Based Colorimetric Fluoride Probe: Rapid "Nakedâ€Eye―Detection and Large Absorption Shift. ChemPlusChem, 2012, 77, 908-913.	2.8	24
157	New triphenylamine-based sensitizers bearing double anchor units for dye-sensitized solar cells. Science China Chemistry, 2015, 58, 1144-1151.	8.2	24
158	New AlEgens containing dibenzothiophene-S,S-dioxide and tetraphenylethene moieties: similar structures but very different hole/electron transport properties. Journal of Materials Chemistry C, 2015, 3, 5903-5909.	5.5	24
159	Pyreneâ€Fused Perylene Diimides: New Building Blocks to Construct Nonâ€Fullerene Acceptors With Extremely High Openâ€Circuit Voltages up to 1.26 V. Solar Rrl, 2017, 1, 1700123.	5.8	24
160	A dual fluorogenic and ¹⁹ F NMR probe for the detection of esterase activity. Materials Chemistry Frontiers, 2018, 2, 1201-1206.	5.9	24
161	Forceâ€Induced Turnâ€On Persistent Roomâ€Temperature Phosphorescence in Purely Organic Luminogen. Angewandte Chemie, 2021, 133, 12443-12448.	2.0	24
162	The crucial roles of the configurations and electronic properties of organic hole-transporting molecules to the photovoltaic performance of perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 18148-18163.	10.3	24

#	Article	IF	CITATIONS
163	Solution-processable ï€-conjugated dendrimers with hole-transporting, electroluminescent and fluorescent pattern properties. Journal of Materials Chemistry, 2011, 21, 14663.	6.7	23
164	New imidazoleâ€functionalized polyfluorene derivatives: convenient postfunctional syntheses, sensitive probes for metal ions and cyanide, and adjustable output signals with diversified fluorescence color. Journal of Polymer Science Part A, 2011, 49, 3314-3327.	2.3	23
165	Synthesis, two-photon absorption and AIE properties of multibranched thiophene-based triphenylamine derivatives with triazine core. Science China Chemistry, 2013, 56, 1204-1212.	8.2	23
166	The utilization of post-synthetic modification in opto-electronic polymers: an effective complementary approach but not a competitive one to the traditional direct polymerization process. Polymer Chemistry, 2015, 6, 6770-6791.	3.9	23
167	Novel D–Aâ^'π–A-Type Organic Dyes Containing a Ladderlike Dithienocyclopentacarbazole Donor for Effective Dye-Sensitized Solar Cells. ACS Omega, 2017, 2, 7048-7056.	3.5	23
168	Alkyl chain engineering of pyrene-fused perylene diimides: impact on transport ability and microfiber self-assembly. Materials Chemistry Frontiers, 2017, 1, 2341-2348.	5.9	23
169	New application of AlEgens realized in photodetectors: reduced work function of transparent electrodes and much improved performance. Materials Chemistry Frontiers, 2018, 2, 264-269.	5.9	23
170	Highly Efficient Organic Room-Temperature Phosphorescent Luminophores through Tuning Triplet States and Spin–Orbit Coupling with Incorporation of a Secondary Group. Journal of Physical Chemistry Letters, 2019, 10, 7141-7147.	4.6	23
171	High Efficiency and Low Rollâ€Off Hybrid WOLEDs by Using a Deep Blue Aggregationâ€Induced Emission Material Simultaneously as Blue Emitter and Phosphor Host. Advanced Optical Materials, 2019, 7, 1801539.	7.3	23
172	Luminous Butterflies: Rational Molecular Design to Optimize Crystal Packing for Dramatically Enhanced Roomâ€Temperature Phosphorescence. Advanced Optical Materials, 2021, 9, 2001549.	7.3	23
173	Advances in Pure Organic Mechanoluminescence Materials. Journal of Physical Chemistry Letters, 2022, 13, 5605-5617.	4.6	23
174	Design, synthesis and nonlinear optical properties of "dendronized hyperbranched polymers― Science Bulletin, 2013, 58, 2753-2761.	1.7	22
175	Using low generation dendrimers as monomers to construct dendronized hyperbranched polymers with high nonlinear optical performance. Journal of Materials Chemistry C, 2014, 2, 8122-8130.	5.5	22
176	A series of dendronized hyperbranched polymers with dendritic chromophore moieties in the periphery: convenient synthesis and large nonlinear optical effects. Polymer Chemistry, 2016, 7, 4016-4024.	3.9	22
177	A rigid ringlike molecule: large second-order nonlinear optical performance, good temporal and thermal stability, and ideal spherical structure conforming to the "site isolation―principle. Journal of Materials Chemistry C, 2018, 6, 6784-6791.	5.5	22
178	A Universal Strategy to Construct Lanthanide-Doped Nanoparticles-Based Activable NIR-II Luminescence Probe for Bioimaging. IScience, 2020, 23, 100962.	4.1	22
179	Sensitizing the Luminescence of Lanthanide-Doped Nanoparticles over 1500 nm for High-Contrast and Deep Imaging of Brain Injury. Analytical Chemistry, 2021, 93, 7949-7957.	6.5	22
180	Synthesis and properties of new two-photon absorption chromophores containing 3,5-dicyano-2,4,6-tristyrylpyridine as the core. New Journal of Chemistry, 2005, 29, 792.	2.8	21

#	Article	IF	CITATIONS
181	A functional conjugated hyperbranched polymer derived from tetraphenylethene and oxadiazole moieties: Synthesis by one-pot "a4+b2+c2―polymerization and applicaion as explosive chemosensor and pled. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1432-1442.	3.8	21
182	Changing the shape of chromophores from "H-type―to "star-type― increasing the macroscopic NLO effects by a large degree. Polymer Chemistry, 2013, 4, 378-386.	3.9	21
183	Using an isolation chromophore to further improve the comprehensive performance of nonlinear optical (NLO) dendrimers. Journal of Materials Chemistry C, 2013, 1, 3226.	5.5	21
184	Diverge from the norm. National Science Review, 2014, 1, 22-24.	9.5	21
185	New D–π–A organic dyes containing a tert-butyl-capped indolo[3,2,1-jk]carbazole donor with bithiophene unit as l€-linker for dye-sensitized solar cells. RSC Advances, 2015, 5, 32967-32975.	3.6	21
186	The influence of pentafluorophenyl groups on the nonlinear optical (NLO) performance of high generation dendrons and dendrimers. Scientific Reports, 2015, 4, 6101.	3.3	21
187	Pyrene-Based Blue AIEgen: Enhanced Hole Mobility and Good EL Performance in Solution-Processed OLEDs. Molecules, 2017, 22, 2144.	3.8	21
188	Enhanced performance and stability of p–i–n perovskite solar cells by utilizing an AIE-active cathode interlayer. Journal of Materials Chemistry A, 2019, 7, 15662-15672.	10.3	21
189	Janus NLO dendrimers with different peripheral functional groups: convenient synthesis and enhanced NLO performance with the aid of the Ar–Ar ^F self-assembly. Journal of Materials Chemistry C, 2019, 7, 7344-7351.	5.5	21
190	Achieving enhanced ML or RTP performance: alkyl substituent effect on the fine-tuning of molecular packing. Materials Chemistry Frontiers, 2021, 5, 817-824.	5.9	21
191	Controllable Synthesis of Externally Functional Dendronized Polymers. CCS Chemistry, 2020, 2, 1040-1048.	7.8	21
192	New Secondâ€Order Nonlinear Optical Polymers Derived from AB ₂ and AB Monomers via Sonogashira Coupling Reaction. Macromolecular Chemistry and Physics, 2010, 211, 916-923.	2.2	20
193	Construction of deep-blue AIE luminogens with TPE and oxadiazole units. Science China Chemistry, 2013, 56, 1213-1220.	8.2	20
194	Significantly improved performance of dye-sensitized solar cells by optimizing organic dyes with pyrrole as the isolation spacer and utilizing alkyl chain engineering. Journal of Materials Chemistry A, 2018, 6, 22256-22265.	10.3	20
195	Modulation of Acceptor Position in Organic Sensitizers: The Optimization of Intramolecular and Interfacial Charge Transfer Processes. ACS Applied Materials & Interfaces, 2019, 11, 27648-27657.	8.0	20
196	Target-modulated sensitization of upconversion luminescence by NIR-emissive quantum dots: a new strategy to construct upconversion biosensors. Chemical Communications, 2020, 56, 1976-1979.	4.1	20
197	A Correlation Study between Dendritic Structure and Macroscopic Nonlinearity for Second-Order Nonlinear Optical Materials. Macromolecules, 2020, 53, 4012-4021.	4.8	20
198	Tunable Photocontrolled Motions of Anilâ€Poly(ethylene terephthalate) Systems through Excitedâ€&tate Intramolecular Proton Transfer and <i>Trans–Cis</i> Isomerization. Advanced Materials, 2021, 33, e2005249.	21.0	20

#	Article	IF	CITATIONS
199	POSS containing organometallic polymers: synthesis, characterization and solid-state pyrolysis behavior. Polymer Chemistry, 2014, 5, 5994-6002.	3.9	19
200	Photo-crosslinkable second-order nonlinear optical polymer: facile synthesis and enhanced NLO thermostability. Polymer Chemistry, 2018, 9, 3522-3527.	3.9	19
201	Tetraphenylcyclopentadiene-Based Hyperbranched Polymers: Convenient Syntheses from One Pot "A ₄ + B ₂ ―Polymerization and High External Quantum Yields up to 9.74% in OLED Devices. Macromolecules, 2019, 52, 896-903.	4.8	19
202	A Versatile Strategy for Constructing Ratiometric Upconversion Luminescent Probe with Sensitized Emission of Energy Acceptor. Analytical Chemistry, 2021, 93, 5635-5643.	6.5	19
203	Substituent Effects in Organic Luminogens with Room Temperature Phosphorescence. ChemPhotoChem, 2021, 5, 694-701.	3.0	19
204	Novel polyphosphazenes containing charge-transporting agent and chromophore as pendant groups. Polymer Bulletin, 2000, 45, 105-111.	3.3	18
205	How the control of aggregation state surprises us?. Science China Chemistry, 2015, 58, 969-969.	8.2	18
206	A second-order nonlinear optical dendronized hyperbranched polymer containing isolation chromophores: achieving good optical nonlinearity and stability simultaneously. Science China Chemistry, 2018, 61, 584-591.	8.2	18
207	Dopantâ€Free Squaraineâ€Based Polymeric Holeâ€Transporting Materials with Comprehensive Passivation Effects for Efficient Allâ€Inorganic Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 17888-17894.	2.0	18
208	Recent progress of magnetic nanomaterials from cobalt-containing organometallic polymer precursors. Polymer Chemistry, 2020, 11, 764-778.	3.9	18
209	Synthesis and structural characterization of a new polysiloxane with second-order nonlinear optical effect. Journal of Applied Polymer Science, 2004, 94, 769-774.	2.6	17
210	A Convenient Approach to <i>C</i> ₂ â€Chiral 1,1,4,4â€Tetrasubstituted Butanetetraols: Direct Alkylation or Arylation of Enantiomerically Pure Diethyl Tartrates. Helvetica Chimica Acta, 2010, 93, 497-503.	1.6	17
211	Main-chain second-order nonlinear optical polyaryleneethynylenes containing isolation chromophores: enhanced nonlinear optical properties, improved optical transparency and stability. Polymer Chemistry, 2013, 4, 3196.	3.9	17
212	Main chain dendronized hyperbranched polymers: convenient synthesis and good second-order nonlinear optical performance. Polymer Chemistry, 2015, 6, 4396-4403.	3.9	17
213	FTC-containing molecules: large second-order nonlinear optical performance and excellent thermal stability, and the key development of the "lsolation Chromophore―concept. Journal of Materials Chemistry C, 2016, 4, 11474-11481.	5.5	17
214	Synthesis and characterization of dendronized hyperbranched polymers through the "A3+B2― approach. Science China Chemistry, 2016, 59, 1561-1567.	8.2	17
215	Copolymers of carbazole and phenazine derivatives: minor structural modification, but totally different photodetector performance. Polymer Chemistry, 2017, 8, 1039-1048.	3.9	17
216	Fabrication of high-performance non-doped OLEDs by combining aggregation-induced emission and thermally activated delayed fluorescence. Science China Chemistry, 2017, 60, 1107-1108.	8.2	17

#	Article	IF	CITATIONS
217	Multistage Stimulusâ€Responsive Room Temperature Phosphorescence Based on Host–Guest Doping Systems. Angewandte Chemie, 2021, 133, 20421-20425.	2.0	17

Second-order nonlinear optical hyperbranched polymer containing isolation chromophore moieties derived from both "H―type and star-type chromophores. Chinese Journal of Polymer Science (English) Tj ETQq&& 0 rgBTL¢Overlock

219	Main Chain Dendronized Polymers: Design, Synthesis, and Application in the Second-Order Nonlinear Optical (NLO) Area. Journal of Physical Chemistry C, 2015, 119, 14281-14287.	3.1	16
220	The integration of an "X―type dendron into polymers to further improve the comprehensive NLO performance. Polymer Chemistry, 2015, 6, 6680-6688.	3.9	16
221	Functionalization of graphene by a TPE-containing polymer using nitrogen-based nucleophiles. Polymer Chemistry, 2016, 7, 4054-4062.	3.9	16
222	The design of second-order nonlinear optical dendrimers: From "branch only―to "root containing― Chinese Journal of Polymer Science (English Edition), 2017, 35, 793-798.	3.8	16
223	Boosting Hydrogen Oxidation Performance of Phase-Engineered Ni Electrocatalyst under Alkaline Media. ACS Sustainable Chemistry and Engineering, 2022, 10, 3682-3689.	6.7	16
224	Synthesis and luminescence of polyphosphazenes with carbazolyl side chains. Journal of Polymer Science Part A, 2001, 39, 3428-3433.	2.3	15
225	Synthesis of C60-containing polyphosphazenes from a new reactive macromolecular intermediate: Polyphophazene azides. Journal of Polymer Science Part A, 2004, 42, 194-199.	2.3	15
226	Synthesis and second-order nonlinear optical properties of multifunctional polysiloxanes with sulfonyl-based chromophores. Journal of Polymer Science Part A, 2005, 43, 1317-1324.	2.3	15
227	DDTC-Na-based colorimetric chemosensor for the sensing of cyanide in water. Science in China Series B: Chemistry, 2009, 52, 802-808.	0.8	14
228	2,3â€bis(5â€Hexylthiophenâ€2â€yl)â€6,7â€bis(octyloxy)â€5,8â€di(thiophenâ€2â€yl) quinoxaline: A good cons with adjustable role in the donorâ€ï€â€acceptor system for bulkâ€heterojunction solar cells. Journal of Polymer Science Part A, 2012, 50, 2819-2828.	truction bl 2.3	lock 14
229	Conjugated or Broken: The Introduction of Isolation Spacer ahead of the Anchoring Moiety and the Improved Device Performance. ACS Applied Materials & Interfaces, 2016, 8, 28652-28662.	8.0	14
230	A strategy to facilitate the assembly of DNA and upconversion nanoparticles for biosensor construction. Analytical Methods, 2018, 10, 3933-3938.	2.7	14
231	Fluorine‣ubstituted Tetraphenylethene Isomers with Different Triboluminescence Properties. ChemPhotoChem, 2019, 3, 133-137.	3.0	14
232	<i>In Vivo</i> Monitoring of Hydrogen Polysulfide <i>via</i> a NIR-Excitable Reversible Fluorescent Probe Based on Upconversion Luminescence Resonance Energy Transfer. Analytical Chemistry, 2022, 94, 8792-8801.	6.5	14
233	New approaches for the synthesis of hindered C60-containing polyphosphazenes via functionalized intermediates. Journal of Polymer Science Part A, 2004, 42, 2877-2885.	2.3	13
234	A Convenient Synthetic Route to 2,5â€Dialkoxyterephthalaldehyde. Synthetic Communications, 2005, 35, 49-53.	2.1	13

#	Article	IF	CITATIONS
235	Molecular engineering and cosensitization for developing efficient solar cells based on porphyrin dyes with an extended l∈ framework. Science China Chemistry, 2014, 57, 1491-1491.	8.2	13
236	Controllable preparation of nanocomposites through convenient structural modification of cobalt contained organometallic precursors: nanotubes and nanospheres with high selectivity, and their magnetic properties. Journal of Materials Chemistry C, 2014, 2, 633-640.	5.5	13
237	A TCBD-based AB ₂ -type second-order nonlinear optical hyperbranched polymer prepared by a facile click-type postfunctionalization. Polymer Chemistry, 2020, 11, 5493-5499.	3.9	13
238	Blue AIE luminogens bearing methyl groups: different linkage position, different number of methyl groups, and different intramolecular conjugation. Organic Chemistry Frontiers, 2015, 2, 1608-1615.	4.5	12
239	Co-sensitization of "H―type dyes with planar squaraine dyes for efficient dye-sensitized solar cells. RSC Advances, 2016, 6, 40750-40759.	3.6	12
240	Butterfly-shaped asymmetric squaraine dimers for organic photovoltaics. Journal of Materials Chemistry C, 2018, 6, 10547-10556.	5.5	12
241	Roomâ€Temperature Phosphorescence Invoked Through Norbornylâ€Driven Intermolecular Interaction Intensification with Anomalous Reversible Solidâ€State Photochromism. Angewandte Chemie, 2020, 132, 20336-20341.	2.0	12
242	Highâ€Contrast Polymorphic Luminogen Formed through Effect of Tiny Differences in Intermolecular Interactions on the Intramolecular Charge Transfer Process. Advanced Optical Materials, 2020, 8, 2000436.	7.3	12
243	Utilizing Electroplex Emission to Achieve External Quantum Efficiency up to 18.1% in Nondoped Blue OLED. Research, 2020, 2020, 8649102.	5.7	12
244	A perylene diimide dimer-based electron transporting material with an A–D–A structure for efficient inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 2544-2550.	5.5	12
245	Naphthalimideâ€and Methacrylateâ€Functionalized Polysiloxanes: Visibleâ€Light Photoinitiators, Modifiers for Polyurethane Acrylate and Photocurable Coatings. ChemPhotoChem, 2018, 2, 818-824.	3.0	11
246	Spiro-Structure: A Good Approach to Achieve Mechanoluminescence Property. ACS Omega, 2019, 4, 18609-18615.	3.5	11
247	An Alkoxyâ€5olubilizing Decacyclic Electron Acceptor for Efficient Ecofriendly Asâ€Cast Bladeâ€Coated Organic Solar Cells. Solar Rrl, 2020, 4, 2000108.	5.8	11
248	Photo-crosslinkable second order nonlinear AB ₂ -type monomers: convenient synthesis and enhanced NLO thermostability. Journal of Materials Chemistry C, 2020, 8, 6380-6387.	5.5	11
249	Intramolecular-locked triphenylamine derivatives with adjustable room temperature phosphorescence properties by the substituent effect. Materials Chemistry Frontiers, 2021, 6, 33-39.	5.9	11
250	Introduction of an Isolation Chromophore into an "Hâ€â€£haped NLO Polymer: Enhanced NLO Effect, Optical Transparency, and Stability. ChemPlusChem, 2013, 78, 1523-1529.	2.8	10
251	Using an orthogonal approach and one-pot method to simplify the synthesis of nonlinear optical (NLO) dendrimers. Polymer Chemistry, 2014, 5, 6667-6670.	3.9	10
252	New anthracene-based organic dyes: the flexible position of the anthracene moiety bearing isolation groups in the conjugated bridge and the adjustable cell performance. Organic Chemistry Frontiers, 2016, 3, 233-242.	4.5	10

#	Article	IF	CITATIONS
253	New insight into intramolecular conjugation in the design of efficient blue materials: from the control of emission to absorption. Journal of Materials Chemistry C, 2017, 5, 6185-6192.	5.5	10
254	An asymmetric 2,3-fluoranthene imide building block for regioregular semiconductors with aggregation-induced emission properties. Chemical Science, 2022, 13, 996-1002.	7.4	10
255	Two-dimensional quinoxaline based low bandgap conjugated polymers for bulk-heterojunction solar cells. Polymer Chemistry, 2015, 6, 7436-7446.	3.9	9
256	A Light-Up Probe for Detection of Adenosine in Urine Samples by a Combination of an AIE Molecule and an Aptamer. Sensors, 2017, 17, 2246.	3.8	9
257	Synergy effect of electronic characteristics and spatial configurations of electron donors on photovoltaic performance of organic dyes. Journal of Materials Chemistry C, 2020, 8, 14453-14461.	5.5	9
258	Activatable luminescent probes for imaging brain diseases. Nano Today, 2021, 39, 101239.	11.9	9
259	Effects of Side Chains in Third Components on the Performance of Fused-Ring Electron-Acceptor-Based Ternary Organic Solar Cells. Energy & Fuels, 2021, 35, 19055-19060.	5.1	9
260	Recent Progress in Understanding the Structural, Optoelectronic, and Photophysical Properties of Lead Based Dion–Jacobson Perovskites as Well as Their Application in Solar Cells. , 2022, 4, 891-917.		9
261	Expounding the Relationship between Molecular Conformation and Room-Temperature Phosphorescence Property by Deviation Angle. Journal of Physical Chemistry Letters, 2022, 13, 3251-3260.	4.6	9
262	Tetracyanobutadienylâ€Based Nonlinear Optical Dendronized Hyperbranched Polymer Synthesized via [2+2]ÂCycloaddition Polymer Postfunctionalization. Macromolecular Rapid Communications, 2022, 43, e2200179.	3.9	9
263	A new postfunctional method to synthesize C60-containing polysiloxanes. Journal of Applied Polymer Science, 2003, 89, 2068-2071.	2.6	8
264	Synthesis and nonlinear optical properties of polyphosphazenes with binaphtholyl and indole side groups. Journal of Applied Polymer Science, 2007, 104, 365-371.	2.6	8
265	Effects of alkoxylation position on fused-ring electron acceptors. Journal of Materials Chemistry C, 2020, 8, 15128-15134.	5.5	8
266	Boosting and Activating NIR-IIb Luminescence of Ag ₂ Te Quantum Dots with a Molecular Trigger. Analytical Chemistry, 2021, 93, 16932-16939.	6.5	8
267	Postfunctionalization strategy for developing polyphosphazene with a high loading of highly polar molecules in the side arms. Journal of Applied Polymer Science, 2003, 89, 2989-2993.	2.6	7
268	The self-assembly effect in NLO polymers containing isolation chromophores: enhanced NLO coefficient and stability. New Journal of Chemistry, 2013, 37, 1789.	2.8	7
269	FACILE APPROACHES FOR CONSTRUCTING BLUE/DEEP-BLUE TPE-BASED SOLID EMITTERS. Journal of Molecular and Engineering Materials, 2013, 01, 1340006.	1.8	7
270	Synthesis and Solid-State Pyrolysis Behavior of POSS Containing Organometallic Polymer with Dicobalt Hexacarbonyl in the Side Chain. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 98-106.	3.7	7

#	Article	IF	CITATIONS
271	A New Strategy to Reduce Toxicity of Ethidium Bromide by Alternating Anions: New Derivatives with Excellent Optical Performances, Convenient Synthesis, and Low Toxicity. Small Methods, 2020, 4, 1900779.	8.6	7
272	Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells. Frontiers of Optoelectronics, 2016, 9, 60-70.	3.7	6
273	Rational Design of 2D p–π Conjugated Polysquaraines for Both Fullerene and Nonfullerene Polymer Solar Cells. Macromolecular Chemistry and Physics, 2020, 221, 1900439.	2.2	6
274	Synthesis, Characterization, and Fluorescence of Copolymers ofN-Alkylcarbazole andtrans-Stilbene Obtained by an Oxidative-Coupling Reaction. Macromolecules, 2000, 33, 5455-5459.	4.8	5
275	New postfunctional method to synthesize C60-containing poly(ethylene oxide). Journal of Applied Polymer Science, 2004, 92, 867-870.	2.6	5
276	A new synthetic strategy to prepare a polyphosphazene with chargeâ€ŧransporting agents and nonlinear optical chromophores as side chains. Chinese Journal of Chemistry, 2003, 21, 1395-1399.	4.9	5
277	Synthesis and twoâ€photon absorption properties of conjugated polymers with <i>N</i> â€arylpyrrole as conjugated bridge and isolation moieties. Journal of Polymer Science Part A, 2011, 49, 2538-2545.	2.3	5
278	Large-scale preparation of graphene sheets and their easy incorporation with other nanomaterials. Polymer Bulletin, 2012, 69, 899-910.	3.3	5
279	The partially controllable growth trend of carbon nanoparticles in solid-state pyrolysis of organometallic precursor by introducing POSS units, and their magnetic properties. RSC Advances, 2015, 5, 63296-63303.	3.6	5
280	New progress in aggregation-induced emission research. Science Bulletin, 2010, 55, 2924-2925.	1.7	4
281	Hole Transportation: Enhanced Hole Transportation for Inverted Tinâ€Based Perovskite Solar Cells with High Performance and Stability (Adv. Funct. Mater. 18/2019). Advanced Functional Materials, 2019, 29, 1970117.	14.9	4
282	Two-photon absorption in V-type chromophores with electron-rich heterocyclevinylene bridges. Science China Chemistry, 2011, 54, 625-630.	8.2	3
283	Dramatically enhancing the yield of carbon nanotubes by simply adding oxygen-containing molecules in solid-state synthesis. Chemical Communications, 2016, 52, 2976-2979.	4.1	3
284	Holeâ€Transporting Molecules with Tetrabenzo[<i>a</i> , <i>c</i> , <i>g</i> , <i>i</i>]carbazole Core for Highly Efficient Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100070.	5.8	3
285	A New Approach to C60-Contanining Polyphosphazenes by Polymerization of Phosphonitrile Chloride Trimer in the Presence of C60. Chinese Journal of Chemistry, 2007, 25, 406-410.	4.9	2
286	New nonlinear optical polyurethanes with adjusted subtle structure through Sonogashira coupling reaction. Polymers for Advanced Technologies, 2011, 22, 675-681.	3.2	2
287	Upconversion Luminescence Nanoprobes: Strategies for Constructing Upconversion Luminescence Nanoprobes to Improve Signal Contrast (Small 1/2020). Small, 2020, 16, 2070012.	10.0	2
288	Synthesis and Properties of Two Secondâ€Order Nonlinear Optical Polymers: an Attempt toward the Balance between Nonlinearity and Transparence against Intrinsic Tradeâ€off. Chinese Journal of Chemistry, 2008, 26, 328-332.	4.9	1

#	Article	IF	CITATIONS
289	Synthesis and photovoltaic property of pyrrole-based conjugated oligomer as organic dye for dye-sensitized solar cells. Frontiers of Optoelectronics in China, 2011, 4, 87-92.	0.2	1
290	Aggregation-Induced Emission Materials: the Art of Conjugation and Rotation. , 0, , 127-153.		1
291	Macromol. Chem. Phys. 1/2010. Macromolecular Chemistry and Physics, 2010, 211, .	2.2	Ο
292	Upconversion Luminescence Based Bio/Chemosensors. , 2021, , 85-174.		0
293	POSS containing hyperbranched polymers as precursors for magnetic Co@C-SiOx ceramic nanocomposites with good sinter-resistant properties and high ceramic yield. Journal of Materials Chemistry C, 0, , .	5.5	0