Isabel Moraes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5949949/publications.pdf Version: 2024-02-01

ISAREL MODAES

#	Article	IF	CITATIONS
1	Two states of a light-sensitive membrane protein captured at room temperature using thin-film sample mounts. Acta Crystallographica Section D: Structural Biology, 2022, 78, 52-58.	1.1	2
2	Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization. Biophysical Journal, 2022, 121, 316a.	0.2	0
3	Measuring Protein Aggregation and Stability Using High-Throughput Biophysical Approaches. Frontiers in Molecular Biosciences, 2022, 9, .	1.6	7
4	Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization. Nature Communications, 2021, 12, 629.	5.8	22
5	Structural Biology and Structure–Function Relationships of Membrane Proteins. Biology, 2021, 10, 245.	1.3	2
6	In Situ Measurements of Polypeptide Samples by Dynamic Light Scattering: Membrane Proteins, a Case Study. Methods in Molecular Biology, 2021, 2208, 189-202.	0.4	1
7	Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization. Acta Crystallographica Section A: Foundations and Advances, 2021, 77, C478-C478.	0.0	0
8	High-throughput approach to prepare high-density microcrystals in lipidic cubic phase for serial crystallography and fragment screening. Acta Crystallographica Section A: Foundations and Advances, 2021, 77, C566-C566.	0.0	0
9	Molecular basis for <scp>GTP</scp> recognition by lightâ€activated guanylate cyclase Rh <scp>GC</scp> . FEBS Journal, 2020, 287, 2797-2807.	2.2	9
10	Insights on the Quest for the Structure–Function Relationship of the Mitochondrial Pyruvate Carrier. Biology, 2020, 9, 407.	1.3	4
11	Probing Membrane Protein Assembly into Nanodiscs by In Situ Dynamic Light Scattering: A2A Receptor as a Case Study. Biology, 2020, 9, 400.	1.3	4
12	Super-Resolution Fluorescence Microscopy Reveals Clustering Behaviour of Chlamydia pneumoniae's Major Outer Membrane Protein. Biology, 2020, 9, 344.	1.3	5
13	Membrane protein crystallography in the era of modern structural biology. Biochemical Society Transactions, 2020, 48, 2505-2524.	1.6	9
14	High-throughput stability screening for detergent-solubilized membrane proteins. Scientific Reports, 2019, 9, 10379.	1.6	79
15	Selection of Biophysical Methods for Characterisation of Membrane Proteins. International Journal of Molecular Sciences, 2019, 20, 2605.	1.8	21
16	Structural biology and structure–function relationships of membrane proteins. Biochemical Society Transactions, 2019, 47, 47-61.	1.6	24
17	Toward G protein-coupled receptor structure-based drug design using X-ray lasers. IUCrJ, 2019, 6, 1106-1119.	1.0	53
18	Crystallisation for serial crystallography in lipidic cubic phase (LCP) made simple. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e658-e658.	0.0	0

ISABEL MORAES

#	Article	IF	CITATIONS
19	Secrets to a successful collaboration. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e718-e718.	0.0	Ο
20	Human mitochondrial pyruvate carrier 2 as an autonomous membrane transporter. Scientific Reports, 2018, 8, 3510.	1.6	39
21	The fine art of integral membrane protein crystallisation. Methods, 2018, 147, 150-162.	1.9	45
22	Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2218-2223.	3.3	113
23	A Novel Approach to Data Collection for Difficult Structures: Data Management for Large Numbers of Crystals with the BLEND Software. Crystals, 2017, 7, 242.	1.0	6
24	Membrane proteins involved in bacterial phospholipid biosynthesis as drug targets?. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C397-C397.	0.0	0
25	Crystal Dehydration in Membrane Protein Crystallography. Advances in Experimental Medicine and Biology, 2016, 922, 73-89.	0.8	4
26	Green Fluorescent Protein-based Expression Screening of Membrane Proteins in Escherichia coli . Journal of Visualized Experiments, 2015, , e52357.	0.2	21
27	Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ, 2015, 2, 168-176.	1.0	196
28	GPCR structure, function, drug discovery and crystallography: report from Academia-Industry International Conference (UK Royal Society) Chicheley Hall, 1–2 September 2014. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 883-903.	1.4	34
29	Methods for the Successful Crystallization of Membrane Proteins. Methods in Molecular Biology, 2015, 1261, 211-230.	0.4	8
30	Membrane protein structure determination — The next generation. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 78-87.	1.4	190
31	X-ray structure of a CDP-alcohol phosphatidyltransferase membrane enzyme and insights into its catalytic mechanism. Nature Communications, 2014, 5, 4169.	5.8	39
32	Amphipol-Trapped ExbB–ExbD Membrane Protein Complex from Escherichia coli: A Biochemical and Structural Case Study. Journal of Membrane Biology, 2014, 247, 1005-1018.	1.0	18
33	Using high-throughput <i>in situ</i> plate screening to evaluate the effect of dehydration on protein crystals. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 920-923.	2.5	17
34	Challenges and opportunities in structure determination of membrane proteins. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, s362-s362.	0.3	0
35	In situplate screening to evaluate the dehydration effect on protein crystals. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, s39-s39.	0.3	0
36	<i>In situ</i> macromolecular crystallography using microbeams. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 592-600.	2.5	113

		Isabel Moraes		
#	Article	IF	CITATIONS	
37	The Structure of Mammalian Serine Racemase. Journal of Biological Chemistry, 2010, 285, 12873-1	.2881. 1.6	76	