Chang-Zhong Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5949609/publications.pdf

Version: 2024-02-01

41 papers 1,538 citations

17 h-index 39 g-index

42 all docs 42 docs citations

times ranked

42

2847 citing authors

#	Article	IF	CITATIONS
1	Highly-efficient and easy separation of \hat{l}^3 -Fe2O3 selectively adsorbs U(\hat{a} ¥) in waters. Environmental Research, 2022, 210, 112917.	3.7	17
2	Low charge compensator (Mg2+) causing a new REE-end 3O structure (REE=Rare Earth Element) and a different phase transformation in Nd3+ Co-doped zirconolite: Investigation by X-ray structural analysis. Ceramics International, 2022, , .	2.3	0
3	Higher valency ion substitution causing different fluorite-derived structures in CaZr1-Nd Ti2-Nb O7 (0.05 a‰¤ a‰¤) solid solution. Ceramics International, 2021, 47, 2694-2704.	2.3	1
4	Phase relationships of the Co–Mn–In system at 673ÂK and the crystal structure and magnetic properties of the novel Co42Mn34In24 compound. Journal of Materials Science, 2021, 56, 10074-10091.	1.7	1
5	Mechanical behavior of open-cell aluminium foams filled with tin-bronze foams. Materials Research Express, 2021, 8, 096505.	0.8	O
6	Effects of CuSn ₃₃ content on the microstructure and mechanical properties of Al/Cu bimetallic foams. Materials Research Express, 2021, 8, 016504.	0.8	1
7	Synchrotron xâ€ray spectroscopy investigation of the Ca 1â^' x Ln x ZrTi 2â^' x (Al, Fe) x O 7 zirconolite ceramics (LnÂ=ÂLa, Nd, Gd, Ho, Yb). Journal of the American Ceramic Society, 2020, 103, 1463-1475.	1.9	13
8	New Barium Vanadate Ba <i>_x</i> V ₂ O ₅ (<i>x</i> â‰^0.16) for Fast Lithium Intercalation: Lower Symmetry for Higher Flexibility and Electrochemical Durability. Small Methods, 2020, 4, 1900585.	4.6	11
9	Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency. Nature Communications, 2020, 11, 4824.	5.8	298
10	Pb Stabilization by a New Chemically Durable Orthophosphate Phase: Insights into the Molecular Mechanism with X-ray Structural Analysis. Environmental Science & Environmental Science & 2020, 54, 6937-6946.	4.6	7
11	STRENGTHENING THE PORE WALLS OF AI FOAMS WITH SURFACE-ALLOYING TECHNIQUE. Surface Review and Letters, 2020, 27, 1950212.	0.5	1
12	Ultra-low remanence and weak magnetic agglomeration of superparamagnetic magnetite nanoparticles caused by high magnetic moment Tb3+ doping. Journal of Materials Science: Materials in Electronics, 2019, 30, 20970-20978.	1.1	3
13	Unraveling the Structure of the Poly(triazine imide)/LiCl Photocatalyst: Cooperation of Facile Syntheses and a Low-Temperature Synchrotron Approach. Inorganic Chemistry, 2019, 58, 15880-15888.	1.9	19
14	Controlling the Valence State of Cu Dopant in \hat{l} ±-Fe2O3 Anodes: Effects on Crystal Structure and the Conversion Reactions with Alkali Ions. Chemistry of Materials, 2019, 31, 1268-1279.	3.2	23
15	Uranium(IV) incorporation into inverse spinel magnetite (\$\$hbox {FeFe}_{2}hbox {O}_{4}\$\$): A charge-balanced substitution case analysis. Pramana - Journal of Physics, 2019, 93, 1.	0.9	1
16	Evaluation of the effectiveness of Cd stabilization by a low-temperature sintering process with kaolinite/mullite addition. Waste Management, 2019, 87, 814-824.	3.7	11
17	Evaluation on the stabilization of Zn/Ni/Cu in spinel forms: Low-cost red mud as an effective precursor. Environmental Pollution, 2019, 249, 144-151.	3.7	18
18	Highly crystalline lithium chloride-intercalated graphitic carbon nitride hollow nanotubes for effective lead removal. Environmental Science: Nano, 2019, 6, 3324-3335.	2.2	16

#	Article	IF	CITATIONS
19	Optimization of Pore Walls Microstructure in Open Cell Aluminum Foams Utilizing Self-Propagating Reaction. Materials Transactions, 2019, 60, 2292-2297.	0.4	2
20	Cadmium stabilization via silicates formation: Efficiency, reaction routes and leaching behavior of products. Environmental Pollution, 2018, 239, 571-578.	3.7	20
21	Activation of Persulfates Using Siderite as a Source of Ferrous Ions: Sulfate Radical Production, Stoichiometric Efficiency, and Implications. ACS Sustainable Chemistry and Engineering, 2018, 6, 3624-3631.	3.2	67
22	Combined Fe ₂ O ₃ and CaCO ₃ Additives To Enhance the Immobilization of Pb in Cathode Ray Tube Funnel Glass. ACS Sustainable Chemistry and Engineering, 2018, 6, 3669-3675.	3.2	7
23	Facile synthesis of highly reactive and stable Fe-doped g-C3N4 composites for peroxymonosulfate activation: A novel nonradical oxidation process. Journal of Hazardous Materials, 2018, 354, 63-71.	6.5	154
24	Cu ₂ O-promoted degradation of sulfamethoxazole by $\langle i \rangle \hat{1} \pm \langle i \rangle$ -Fe ₂ O ₃ -catalyzed peroxymonosulfate under circumneutral conditions: synergistic effect, Cu/Fe ratios, and mechanisms. Environmental Technology (United Kingdom), 2018, 39, 1-11.	1.2	39
25	Immobilization of Lead in Cathode Ray Tube Funnel Glass with Beneficial Use of Red Mud for Potential Application in Ceramic Industry. ACS Sustainable Chemistry and Engineering, 2018, 6, 14213-14220.	3.2	6
26	Synergistic effects of Ln and Fe Co-Doping on phase evolution of Ca1-Ln ZrTi2-Fe O7 (LnÂ= La, Nd, Gd, Ho,) Tj ETC	0q0,0 0 rgl	B∏/Overloch
27	Effects of ionic radius on phase evolution in Ln-Al co-doped Ca1-xLnxZrTi2-xAlxO7 (Ln = La, Nd, Gd, Ho,) Tj ETQq1	1 _{2.3} 78431	.4zgBT/Ove
28	Supported palladium nanoparticles as highly efficient catalysts for radical production: Support-dependent synergistic effects. Chemosphere, 2018, 207, 27-32.	4.2	9
29	Combined Quantitative X-ray Diffraction, Scanning Electron Microscopy, and Transmission Electron Microscopy Investigations of Crystal Evolution in CaOâ€"Al ₂ 0 ₃ â€"SiO ₂ â€"TiO ₂ â€"ZrO ₂ â€"Nd ₂ â€"Nd ₂ â€"TiO ₂ â€"ZrO ₂ â€"Nd ₂ â€"Nd ₂ â€"Nd ₂ â€"TiO ₂ â€"ZrO ₂ â€"Nd ₂ â€"Nd ₂ â€"Nd ₂ â€"Nd ₂ â€"ZrO ₂ â€"Nd ₂ âbab 3âbab <b< td=""><td>1.4 sub>2<td>b>0₃</td></td></b<>	1.4 sub>2 <td>b>0₃</td>	b>0 ₃
30	Surface localization of the Er-related optical active centers in Er doped zinc oxide films. Journal of Applied Physics, 2017, 121, .	1.1	8
31	Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic. Journal of Hazardous Materials, 2017, 321, 449-455.	6.5	51
32	Double-Barrier mechanism for chromium immobilization: A quantitative study of crystallization and leachability. Journal of Hazardous Materials, 2016, 311, 246-253.	6.5	55
33	Copper-promoted circumneutral activation of H2O2 by magnetic CuFe2O4 spinel nanoparticles: Mechanism, stoichiometric efficiency, and pathway of degrading sulfanilamide. Chemosphere, 2016, 154, 573-582.	4.2	87
34	Is Excess PbI ₂ Beneficial for Perovskite Solar Cell Performance?. Advanced Energy Materials, 2016, 6, 1502206.	10.2	322
35	Cubic and tetragonal ferrite crystal structures for copper ion immobilization in an iron-rich ceramic matrix. RSC Advances, 2016, 6, 28579-28585.	1.7	23
36	An alumina stabilized graphene oxide wrapped SnO ₂ hollow sphere LIB anode with improved lithium storage. RSC Advances, 2015, 5, 100783-100789.	1.7	14

#	Article	IF	CITATIONS
37	Hydrothermally synthesized CuxO as a catalyst for CO oxidation. Journal of Materials Chemistry A, 2015, 3, 3627-3632.	5.2	30
38	The effect of different dopants on the performance of SnO ₂ â€based dyeâ€sensitized solar cells. Physica Status Solidi (B): Basic Research, 2015, 252, 553-557.	0.7	8
39	Crystal Structures of Al–Nd Codoped Zirconolite Derived from Glass Matrix and Powder Sintering. Inorganic Chemistry, 2015, 54, 7353-7361.	1.9	20
40	Quantitative X-ray Diffraction (QXRD) analysis for revealing thermal transformations of red mud. Chemosphere, 2015, 131, 171-177.	4.2	47
41	Cadmium Stabilization Efficiency and Leachability by CdAl ₄ O ₇ Monoclinic Structure. Environmental Science & Environmental Science	4.6	37