Olivier Duron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5949560/publications.pdf

Version: 2024-02-01

0.700	159358	143772
3,/80	30	57
citations	h-index	g-index
69	69	3375
docs citations	times ranked	citing authors
		3,780 30 citations h-index 69 69

#	Article	IF	CITATIONS
1	The diversity of reproductive parasites among arthropods: Wolbachiado not walk alone. BMC Biology, 2008, 6, 27.	1.7	596
2	The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission. Frontiers in Cellular and Infection Microbiology, 2017, 7, 236.	1.8	267
3	Tick-Bacteria Mutualism Depends on B Vitamin Synthesis Pathways. Current Biology, 2018, 28, 1896-1902.e5.	1.8	246
4	The Recent Evolution of a Maternally-Inherited Endosymbiont of Ticks Led to the Emergence of the Q Fever Pathogen, Coxiella burnetii. PLoS Pathogens, 2015, 11, e1004892.	2.1	218
5	Evolutionary changes in symbiont community structure in ticks. Molecular Ecology, 2017, 26, 2905-2921.	2.0	187
6	The Importance of Ticks in Q Fever Transmission: What Has (and Has Not) Been Demonstrated?. Trends in Parasitology, 2015, 31, 536-552.	1.5	149
7	Diversification of Wolbachia Endosymbiont in the Culex pipiens Mosquito. Molecular Biology and Evolution, 2011, 28, 2761-2772.	3.5	114
8	High incidence of the maternally inherited bacterium <i>Cardinium</i> in spiders. Molecular Ecology, 2008, 17, 1427-1437.	2.0	102
9	Interspecific transmission of a maleâ€killing bacterium on an ecological timescale. Ecology Letters, 2010, 13, 1139-1148.	3.0	100
10	Arthropods and inherited bacteria: from counting the symbionts to understanding how symbionts count. BMC Biology, 2013, 11, 45.	1.7	96
11	Evolution and diversity of <i><scp>A</scp>rsenophonus</i> endosymbionts in aphids. Molecular Ecology, 2013, 22, 260-270.	2.0	83
12	Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasites and Vectors, 2019, 12, 268.	1.0	81
13	Diversity and global distribution of the Coxiella intracellular bacterium in seabird ticks. Ticks and Tick-borne Diseases, 2014, 5, 557-563.	1.1	77
14	Cytoplasmic Incompatibility as a Means of Controlling Culex pipiens quinquefasciatus Mosquito in the Islands of the South-Western Indian Ocean. PLoS Neglected Tropical Diseases, 2011, 5, e1440.	1.3	74
15	Transposable element polymorphism of Wolbachia in the mosquito Culex pipiens: evidence of genetic diversity, superinfection and recombination. Molecular Ecology, 2005, 14, 1561-1573.	2.0	72
16	The Bacteriome of Bat Flies (Nycteribiidae) from the Malagasy Region: a Community Shaped by Host Ecology, Bacterial Transmission Mode, and Host-Vector Specificity. Applied and Environmental Microbiology, 2016, 82, 1778-1788.	1.4	71
17	Tracking factors modulating cytoplasmic incompatibilities in the mosquito Culex pipiens. Molecular Ecology, 2006, 15, 3061-3071.	2.0	61
18	Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species. BMC Evolutionary Biology, 2013, 13, 181.	3.2	57

#	Article	IF	CITATIONS
19	Variability and Expression of Ankyrin Domain Genes in Wolbachia Variants Infecting the Mosquito Culex pipiens. Journal of Bacteriology, 2007, 189, 4442-4448.	1.0	54
20	Endosymbiont diversity and prevalence in herbivorous spider mite populations in South-Western Europe. FEMS Microbiology Ecology, 2018, 94, .	1.3	53
21	Hypervariable prophage WO sequences describe an unexpected high number of Wolbachia variants in the mosquito Culex pipiens. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 495-502.	1.2	49
22	Convergence of Nutritional Symbioses in Obligate Blood Feeders. Trends in Parasitology, 2020, 36, 816-825.	1.5	49
23	High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes. Evolution; International Journal of Organic Evolution, 2006, 60, 303-14.	1.1	49
24	Microbial community structure reveals instability of nutritional symbiosis during the evolutionary radiation of <i>Amblyomma</i> ticks. Molecular Ecology, 2020, 29, 1016-1029.	2.0	48
25	Multiple Wolbachia determinants control the evolution of cytoplasmic incompatibilities in Culex pipiens mosquito populations. Molecular Ecology, 2011, 20, 286-298.	2.0	46
26	The IS1111 insertion sequence used for detection of Coxiella burnetiiis widespread in Coxiella-like endosymbionts of ticks. FEMS Microbiology Letters, 2015, 362, fnv132.	0.7	46
27	Dynamics of prevalence and diversity of avian malaria infections in wild Culex pipiens mosquitoes: the effects of Wolbachia, filarial nematodes and insecticide resistance. Parasites and Vectors, 2014, 7, 437.	1.0	41
28	Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Molecular Ecology, 2014, 23, 2105-2117.	2.0	38
29	<i>Arsenophonus</i> insect symbionts are commonly infected with APSE, a bacteriophage involved in protective symbiosis. FEMS Microbiology Ecology, 2014, 90, 184-194.	1.3	36
30	Natural <i>Wolbachia</i> infections are common in the major malaria vectors in Central Africa. Evolutionary Applications, 2019, 12, 1583-1594.	1.5	36
31	A wide diversity of <i>Pantoea</i> lineages are engaged in mutualistic symbiosis and cospeciation processes with stinkbugs. Environmental Microbiology Reports, 2016, 8, 715-727.	1.0	34
32	Molecular methods routinely used to detect <i>Coxiella burnetii</i> in ticks cross-react with <i>Coxiella</i> -like bacteria. Infection Ecology and Epidemiology, 2015, 5, 29230.	0.5	32
33	A novel Borrelia species, intermediate between Lyme disease and relapsing fever groups, in neotropical passerine-associated ticks. Scientific Reports, 2020, 10, 10596.	1.6	32
34	A dual endosymbiosis supports nutritional adaptation to hematophagy in the invasive tick Hyalomma marginatum. ELife, 2021, 10 , .	2.8	32
35	HIGH WOLBACHIA DENSITY CORRELATES WITH COST OF INFECTION FOR INSECTICIDE RESISTANT CULEX PIPIENS MOSQUITOES. Evolution; International Journal of Organic Evolution, 2006, 60, 303.	1.1	28
36	Phylogenetics of the Spiroplasma ixodetis endosymbiont reveals past transfers between ticks and other arthropods. Ticks and Tick-borne Diseases, 2019, 10, 575-584.	1.1	28

#	Article	IF	CITATIONS
37	The High Diversity and Global Distribution of the Intracellular Bacterium Rickettsiella in the Polar Seabird Tick Ixodes uriae. Microbial Ecology, 2016, 71, 761-770.	1.4	27
38	Tissue localization of Coxiella-like endosymbionts in three European tick species through fluorescence in situ hybridization. Ticks and Tick-borne Diseases, 2019, 10, 798-804.	1,1	27
39	Distribution of Endosymbiotic Reproductive Manipulators Reflects Invasion Process and Not Reproductive System Polymorphism in the Little Fire Ant Wasmannia auropunctata. PLoS ONE, 2013, 8, e58467.	1.1	26
40	The Importance of Revisiting Legionellales Diversity. Trends in Parasitology, 2018, 34, 1027-1037.	1.5	26
41	Stable coexistence of incompatible <i>Wolbachia</i> along a narrow contact zone in mosquito field populations. Molecular Ecology, 2015, 24, 508-521.	2.0	25
42	Ecology, evolution, and epidemiology of zoonotic and vector-borne infectious diseases in French Guiana: Transdisciplinarity does matter to tackle new emerging threats. Infection, Genetics and Evolution, 2021, 93, 104916.	1.0	22
43	Two novel Rickettsia species of soft ticks in North Africa: â€~Candidatus Rickettsia africaseptentrionalis' and â€~Candidatus Rickettsia mauretanica'. Ticks and Tick-borne Diseases, 2020, 11, 101376.	1.1	21
44	Survey of ticks in French Guiana. Ticks and Tick-borne Diseases, 2019, 10, 77-85.	1.1	20
45	Absence of Wolbachia in Nonfilariid Worms Parasitizing Arthropods. Current Microbiology, 2007, 55, 193-197.	1.0	19
46	Adaptation due to symbionts and conflicts between heritable agents of biological information. Nature Reviews Genetics, 2011, 12, 663-663.	7.7	18
47	On the Genetic Architecture of Cytoplasmic Incompatibility: Inference from Phenotypic Data. American Naturalist, 2013, 182, E15-E24.	1.0	17
48	Sex ratios of the tick Ixodes arboricola are strongly female-biased, but there are no indications of sex-distorting bacteria. Ticks and Tick-borne Diseases, 2018, 9, 307-313.	1.1	16
49	Rapid evolution of <i>Wolbachia li>incompatibility types. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4473-4480.</i>	1.2	15
50	Evidence that microbes identified as tick-borne pathogens are nutritional endosymbionts. Cell, 2021, 184, 2259-2260.	13.5	15
51	Novel Rickettsia genotypes in ticks in French Guiana, South America. Scientific Reports, 2020, 10, 2537.	1.6	13
52	Borrelia afzelii Infection in the Rodent Host Has Dramatic Effects on the Bacterial Microbiome of Ixodes ricinus Ticks. Applied and Environmental Microbiology, 2021, 87, e0064121.	1.4	13
53	Habitat fragmentation differentially shapes neutral and immune gene variation in a tropical bird species. Heredity, 2021, 126, 148-162.	1.2	11
54	Changes in Bacterial Diversity, Composition and Interactions During the Development of the Seabird Tick Ornithodoros maritimus (Argasidae). Microbial Ecology, 2021, 81, 770-783.	1.4	10

#	Article	IF	CITATIONS
55	Infection with Borrelia afzelii and manipulation of the egg surface microbiota have no effect on the fitness of immature Ixodes ricinus ticks. Scientific Reports, 2021, 11, 10686.	1.6	8
56	Vector competence of the African argasid tick Ornithodoros moubata for the Q fever agent Coxiella burnetii. PLoS Neglected Tropical Diseases, 2021, 15, e0009008.	1.3	7
57	Mod/Resc Parsimony Inference: Theory and application. Information and Computation, 2012, 213, 23-32.	0.5	6
58	Allergy to Mammalian Meat Linked to Alpha-Gal Syndrome Potentially After Tick Bite in the Amazon: A Case Series. American Journal of Tropical Medicine and Hygiene, 2021, 105, 1396-1403.	0.6	4
59	Ecological Contacts and Host Specificity Promote Replacement of Nutritional Endosymbionts in Ticks. Microbial Ecology, 2022, 83, 776-788.	1.4	3
60	Mod/Resc Parsimony Inference. Lecture Notes in Computer Science, 2010, , 202-213.	1.0	3