Agnieszka Ewa WiÄcek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5949169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Influence of Polysaccharides/TiO2 on the Model Membranes of Dipalmitoylphosphatidylglycerol and Bacterial Lipids. Molecules, 2022, 27, 343.	1.7	7
2	Wettability and Stability of Naproxen, Ibuprofen and/or Cyclosporine A/Silica Delivery Systems. Colloids and Interfaces, 2022, 6, 11.	0.9	4
3	The effect of chitosan/TiO2/hyaluronic acid subphase on the behaviour of 1,2-dioleoyl-sn-glycero-3-phosphocholine membrane. , 2022, , 212934.		3
4	Characteristics of hybrid chitosan/phospholipid-sterol, peptide coatings on plasma activated PEEK polymer. Materials Science and Engineering C, 2021, 120, 111658.	3.8	22
5	What affects the biocompatibility of polymers?. Advances in Colloid and Interface Science, 2021, 294, 102451.	7.0	89
6	Physicochemical characteristics of chitosan-TiO2 biomaterial. 2. Wettability and biocompatibility. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127546.	2.3	11
7	EFFECT OF CHITOSAN AND LIPID LAYERS DEPOSITED ONTO POLYETHYLENE TEREPHTHALATE (PET) ON ITS WETTING PROPERTIES. Progress on Chemistry and Application of Chitin and Its Derivatives, 2021, 26, 210-221.	0.1	Ο
8	Release kinetics and antimicrobial properties of the potassium sorbate-loaded edible films made from pullulan, gelatin and their blends. Food Hydrocolloids, 2020, 101, 105539.	5.6	47
9	Cyclosporine CsA—The Physicochemical Characterization of Liposomal and Colloidal Systems. Colloids and Interfaces, 2020, 4, 46.	0.9	11
10	CHARACTERIZATION OF MIXED LANGMUIR MONOLAYERS OF CYCLOSPORINE A WITH THE PHOSPHOLIPID DPPC AT THE CHITOSAN SUBPHASE. Progress on Chemistry and Application of Chitin and Its Derivatives, 2020, XXV, 227-235.	0.1	0
11	Characteristics of Polypeptide/Phospholipid Monolayers on Water and the Plasmaâ€Activated Polyetheretherketone Support. Journal of Surfactants and Detergents, 2019, 22, 1213-1228.	1.0	11
12	Structure and wettability of heterogeneous monomolecular films of phospholipids with cholesterol or lauryl gallate. Applied Surface Science, 2019, 493, 1021-1031.	3.1	4
13	The impact of lignin addition on the properties of hybrid microspheres based on trimethoxyvinylsilane and divinylbenzene. European Polymer Journal, 2019, 120, 109200.	2.6	8
14	Properties of the Langmuir and Langmuir–Blodgett monolayers of cholesterol-cyclosporine A on water and polymer support. Adsorption, 2019, 25, 923-936.	1.4	33
15	Edible films made from blends of gelatin and polysaccharide-based emulsifiers - A comparative study. Food Hydrocolloids, 2019, 96, 555-567.	5.6	55
16	Wetting Properties of Polyetheretherketone Plasma Activated and Biocoated Surfaces. Colloids and Interfaces, 2019, 3, 40.	0.9	14
17	Temperature-dependent interactions in the chitosan/cyclosporine A system at liquid–air interface. Journal of Thermal Analysis and Calorimetry, 2019, 138, 4513-4521.	2.0	5
18	Langmuir monolayer study of phospholipid DPPC on the titanium dioxide–chitosan–hyaluronic acid subphases. Adsorption, 2019, 25, 469-476.	1.4	28

#	Article	IF	CITATIONS
19	Wettability of DPPC Monolayers Deposited from the Titanium Dioxide–Chitosan–Hyaluronic Acid Subphases on Glass. Colloids and Interfaces, 2019, 3, 15.	0.9	12
20	Sustainable carbon microtube derived from cotton waste for environmental applications. Chemical Engineering Journal, 2019, 361, 1605-1616.	6.6	32
21	WETTABILITY OF CHITOSAN-MODIFIED AND LIPID/POLYPEPTIDE-COATED PEEK SURFACES. Progress on Chemistry and Application of Chitin and Its Derivatives, 2019, XXIV, 172-182.	0.1	2
22	SURFACE CHARACTERISTICS OF DPPC MONOLAYERS DEPOSITED FROM TITANIUM DIOXIDE–CHITOSAN–HYALURONIC ACID SUBPHASES ON A GLASS SUPPORT. Progress on Chemistry and Application of Chitin and Its Derivatives, 2019, XXIV, 106-118.	0.1	2
23	Physicochemical Characteristics of Chitosan–TiO ₂ Biomaterial. 1. Stability and Swelling Properties. Industrial & Engineering Chemistry Research, 2018, 57, 1859-1870.	1.8	48
24	Wettability of plasma modified glass surface with bioglass layer in polysaccharide solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 551, 185-194.	2.3	19
25	Influence of nitrogen plasma treatment on the wettability of polyetheretherketone and deposited chitosan layers. Advances in Polymer Technology, 2018, 37, 1557-1569.	0.8	36
26	Effect of UV radiation and chitosan coating on the adsorption-photocatalytic activity of TiO2 particles. Materials Science and Engineering C, 2018, 93, 582-594.	3.8	21
27	WETTING PROPERTIES OF CHITOSAN-MODIFIED AND PLASMA-TREATED PEEK SURFACES. Progress on Chemistry and Application of Chitin and Its Derivatives, 2018, XXIII, 159-169.	0.1	1
28	Interfacial properties of PET and PET/starch polymers developed by air plasma processing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 323-331.	2.3	28
29	Chitosan/phospholipid coated polyethylene terephthalate (PET) polymer surfaces activated by air plasma. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 155-164.	2.3	32
30	BEHAVIOUR OF TiO2/CHITOSAN DISPERSION AS A FUNCTION OF SOLUTION pH. Progress on Chemistry and Application of Chitin and Its Derivatives, 2017, XXII, 27-41.	0.1	1
31	WETTABILITY OF HYBRID CHITOSAN/PHOSPHOLIPID COATINGS. Progress on Chemistry and Application of Chitin and Its Derivatives, 2017, XXII, 66-76.	0.1	1
32	Low-temperature air plasma modification of chitosan-coated PEEK biomaterials. Polymer Testing, 2016, 50, 325-334.	2.3	37
33	Properties of PEEK-supported films of biological substances prepared by the Langmuir-Blodgett technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510, 263-274.	2.3	22
34	Effect of low-temperature plasma on chitosan-coated PEEK polymer characteristics. European Polymer Journal, 2016, 78, 1-13.	2.6	45
35	Advanced oxidation (H2O2 and/or UV) of functionalized carbon nanotubes (CNT-OH and CNT-COOH) and its influence on the stabilization of CNTs in water and tannic acid solution. Environmental Pollution, 2015, 200, 161-167.	3.7	29
36	Interfacial Properties of Phosphatidylcholine-based Dispersed Systems. Industrial & Engineering Chemistry Research, 2015, 54, 6489-6496.	1.8	12

#	Article	IF	CITATIONS
37	Effect of surface modification on starch biopolymer wettability. Food Hydrocolloids, 2015, 48, 228-237.	5.6	45
38	Effect of surface modification on starch/phospholipid wettability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 351-359.	2.3	31
39	Water treatment by H2O2 and/or UV affects carbon nanotube (CNT) properties and fate in water and tannic acid solution. Environmental Science and Pollution Research, 2015, 22, 20198-20206.	2.7	11
40	The electrokinetic and rheological behavior of phosphatidylcholine-treated TiO2 suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 440, 110-115.	2.3	12
41	Influence of dipalmitoylphosphatidylcholine (or dioleoylphosphatidylcholine) and phospholipase A2 enzyme on the properties of emulsions. Journal of Colloid and Interface Science, 2012, 373, 75-83.	5.0	7
42	Investigation of DPPC effect on SiO2 particles and in the presence of phospho(lipases) by zeta potential and effective diameter measurements. Powder Technology, 2011, 213, 141-147.	2.1	10
43	The wetting and interfacial properties of alumina surface treated with dipalmitoylphosphatidylcholine and lipase enzyme. Powder Technology, 2011, 212, 332-339.	2.1	8
44	Comparison of n-tetradecane/electrolyte emulsions properties stabilized by DPPC and DPPC vesicles in the electrolyte solution. Colloids and Surfaces B: Biointerfaces, 2011, 83, 108-115.	2.5	9
45	Changes in wetting properties of alumina surface treated with DPPC in the presence of phospholipase A2 enzyme. Colloids and Surfaces B: Biointerfaces, 2011, 87, 54-60.	2.5	11
46	Investigations of DPPC effect on Al2O3 particles in the presence of (phospho)lipases by the zeta potential and effective diameter measurements. Applied Surface Science, 2011, 257, 4495-4504.	3.1	13
47	Changes in wetting properties of silica surface treated with DPPC in the presence of phospholipase A2 enzyme. Applied Surface Science, 2010, 256, 7672-7677.	3.1	14
48	Electrokinetic properties of n-tetradecane/ethanol emulsions with DPPC and enzyme lipase or phospholipase A2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 332, 150-156.	2.3	5
49	Effect of Temperature on <i>n</i> -Tetradecane Emulsion in the Presence of Phospholipid DPPC and Enzyme Lipase or Phospholipase A ₂ . Langmuir, 2008, 24, 7413-7420.	1.6	14
50	Electrokinetic properties of n-tetradecane/lecithin solution emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 293, 20-27.	2.3	10
51	Effect of ionic strength on electrokinetic properties of oil/water emulsions with dipalmitoylphosphatidylcholine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 141-149.	2.3	21
52	Comparison of the Properties of Vegetable Oil/Water and n-Tetradecane/Water Emulsions Stabilized by α-Lactalbumin or β-Casein. Adsorption Science and Technology, 2005, 23, 777-789.	1.5	4
53	Investigation of the Electrokinetic Properties of Paraffin Suspension. 2. In Cationic and Anionic Surfactant Solutions. Langmuir, 2005, 21, 7662-7671.	1.6	7
54	Investigation of the Electrokinetic Properties of Paraffin Suspension. 1. In Inorganic Electrolyte Solutions. Langmuir, 2005, 21, 4347-4355.	1.6	20

#	Article	IF	CITATIONS
55	Zeta potential and droplet size of n-tetradecane/ethanol (protein) emulsions. Colloids and Surfaces B: Biointerfaces, 2002, 25, 55-67.	2.5	23
56	Studies of oil-in-water emulsion stability in the presence of new dicephalic saccharide-derived surfactants. Colloids and Surfaces B: Biointerfaces, 2002, 25, 243-256.	2.5	20
57	Investigation of dialkyldimethylammonium bromides as stabilizers and/or emulsifiers for O/W emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 193, 51-60.	2.3	6
58	Stability of oil/water (ethanol, lysozyme or lysine) emulsions. Colloids and Surfaces B: Biointerfaces, 2000, 17, 175-190.	2.5	22
59	Zeta potential, effective diameter and multimodal size distribution in oil/water emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 159, 253-261.	2.3	78
60	Application of an extended DLVO theory for the calculation of the interactions between emulsified oil droplets in alcohol solutions. Colloids and Surfaces B: Biointerfaces, 1999, 14, 19-26.	2.5	16
61	Zeta potential and effective diameter of n-tetradecane emulsions in n-propanol solutions and in the presence of lysozyme. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 127, 163-173.	2.3	8
62	Model studies on then-alkane emulsions stability. Progress in Colloid and Polymer Science, 1997, 105, 260-267.	0.5	4