Agnieszka Ewa WiÄcek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5949169/publications.pdf

Version: 2024-02-01

62 papers

1,164 citations

331259 21 h-index 433756 31 g-index

63 all docs 63
docs citations

63 times ranked

1263 citing authors

#	Article	IF	CITATIONS
1	What affects the biocompatibility of polymers?. Advances in Colloid and Interface Science, 2021, 294, 102451.	7.0	89
2	Zeta potential, effective diameter and multimodal size distribution in oil/water emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 159, 253-261.	2.3	78
3	Edible films made from blends of gelatin and polysaccharide-based emulsifiers - A comparative study. Food Hydrocolloids, 2019, 96, 555-567.	5 . 6	55
4	Physicochemical Characteristics of Chitosan–TiO ₂ Biomaterial. 1. Stability and Swelling Properties. Industrial & Engineering Chemistry Research, 2018, 57, 1859-1870.	1.8	48
5	Release kinetics and antimicrobial properties of the potassium sorbate-loaded edible films made from pullulan, gelatin and their blends. Food Hydrocolloids, 2020, 101, 105539.	5 . 6	47
6	Effect of surface modification on starch biopolymer wettability. Food Hydrocolloids, 2015, 48, 228-237.	5.6	45
7	Effect of low-temperature plasma on chitosan-coated PEEK polymer characteristics. European Polymer Journal, 2016, 78, 1-13.	2.6	45
8	Low-temperature air plasma modification of chitosan-coated PEEK biomaterials. Polymer Testing, 2016, 50, 325-334.	2.3	37
9	Influence of nitrogen plasma treatment on the wettability of polyetheretherketone and deposited chitosan layers. Advances in Polymer Technology, 2018, 37, 1557-1569.	0.8	36
10	Properties of the Langmuir and Langmuir–Blodgett monolayers of cholesterol-cyclosporine A on water and polymer support. Adsorption, 2019, 25, 923-936.	1.4	33
11	Chitosan/phospholipid coated polyethylene terephthalate (PET) polymer surfaces activated by air plasma. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 155-164.	2.3	32
12	Sustainable carbon microtube derived from cotton waste for environmental applications. Chemical Engineering Journal, 2019, 361, 1605-1616.	6.6	32
13	Effect of surface modification on starch/phospholipid wettability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 351-359.	2.3	31
14	Advanced oxidation (H2O2 and/or UV) of functionalized carbon nanotubes (CNT-OH and CNT-COOH) and its influence on the stabilization of CNTs in water and tannic acid solution. Environmental Pollution, 2015, 200, 161-167.	3.7	29
15	Interfacial properties of PET and PET/starch polymers developed by air plasma processing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 323-331.	2.3	28
16	Langmuir monolayer study of phospholipid DPPC on the titanium dioxide–chitosan–hyaluronic acid subphases. Adsorption, 2019, 25, 469-476.	1.4	28
17	Zeta potential and droplet size of n-tetradecane/ethanol (protein) emulsions. Colloids and Surfaces B: Biointerfaces, 2002, 25, 55-67.	2.5	23
18	Stability of oil/water (ethanol, lysozyme or lysine) emulsions. Colloids and Surfaces B: Biointerfaces, 2000, 17, 175-190.	2.5	22

#	Article	IF	Citations
19	Properties of PEEK-supported films of biological substances prepared by the Langmuir-Blodgett technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510, 263-274.	2.3	22
20	Characteristics of hybrid chitosan/phospholipid-sterol, peptide coatings on plasma activated PEEK polymer. Materials Science and Engineering C, 2021, 120, 111658.	3.8	22
21	Effect of ionic strength on electrokinetic properties of oil/water emulsions with dipalmitoylphosphatidylcholine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 141-149.	2.3	21
22	Effect of UV radiation and chitosan coating on the adsorption-photocatalytic activity of TiO2 particles. Materials Science and Engineering C, 2018, 93, 582-594.	3.8	21
23	Studies of oil-in-water emulsion stability in the presence of new dicephalic saccharide-derived surfactants. Colloids and Surfaces B: Biointerfaces, 2002, 25, 243-256.	2.5	20
24	Investigation of the Electrokinetic Properties of Paraffin Suspension. 1. In Inorganic Electrolyte Solutions. Langmuir, 2005, 21, 4347-4355.	1.6	20
25	Wettability of plasma modified glass surface with bioglass layer in polysaccharide solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 551, 185-194.	2.3	19
26	Application of an extended DLVO theory for the calculation of the interactions between emulsified oil droplets in alcohol solutions. Colloids and Surfaces B: Biointerfaces, 1999, 14, 19-26.	2.5	16
27	Effect of Temperature on <i>n</i> -Tetradecane Emulsion in the Presence of Phospholipid DPPC and Enzyme Lipase or Phospholipase A ₂ . Langmuir, 2008, 24, 7413-7420.	1.6	14
28	Changes in wetting properties of silica surface treated with DPPC in the presence of phospholipase A2 enzyme. Applied Surface Science, 2010, 256, 7672-7677.	3.1	14
29	Wetting Properties of Polyetheretherketone Plasma Activated and Biocoated Surfaces. Colloids and Interfaces, 2019, 3, 40.	0.9	14
30	Investigations of DPPC effect on Al2O3 particles in the presence of (phospho)lipases by the zeta potential and effective diameter measurements. Applied Surface Science, 2011, 257, 4495-4504.	3.1	13
31	The electrokinetic and rheological behavior of phosphatidylcholine-treated TiO2 suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 440, 110-115.	2.3	12
32	Interfacial Properties of Phosphatidylcholine-based Dispersed Systems. Industrial & Engineering Chemistry Research, 2015, 54, 6489-6496.	1.8	12
33	Wettability of DPPC Monolayers Deposited from the Titanium Dioxide–Chitosan–Hyaluronic Acid Subphases on Glass. Colloids and Interfaces, 2019, 3, 15.	0.9	12
34	Changes in wetting properties of alumina surface treated with DPPC in the presence of phospholipase A2 enzyme. Colloids and Surfaces B: Biointerfaces, 2011, 87, 54-60.	2.5	11
35	Water treatment by H2O2 and/or UV affects carbon nanotube (CNT) properties and fate in water and tannic acid solution. Environmental Science and Pollution Research, 2015, 22, 20198-20206.	2.7	11
36	Characteristics of Polypeptide/Phospholipid Monolayers on Water and the Plasmaâ€Activated Polyetheretherketone Support. Journal of Surfactants and Detergents, 2019, 22, 1213-1228.	1.0	11

#	Article	IF	Citations
37	Cyclosporine CsAâ€"The Physicochemical Characterization of Liposomal and Colloidal Systems. Colloids and Interfaces, 2020, 4, 46.	0.9	11
38	Physicochemical characteristics of chitosan-TiO2 biomaterial. 2. Wettability and biocompatibility. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127546.	2.3	11
39	Electrokinetic properties of n-tetradecane/lecithin solution emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 293, 20-27.	2.3	10
40	Investigation of DPPC effect on SiO2 particles and in the presence of phospho(lipases) by zeta potential and effective diameter measurements. Powder Technology, 2011, 213, 141-147.	2.1	10
41	Comparison of n-tetradecane/electrolyte emulsions properties stabilized by DPPC and DPPC vesicles in the electrolyte solution. Colloids and Surfaces B: Biointerfaces, 2011, 83, 108-115.	2.5	9
42	Zeta potential and effective diameter of n-tetradecane emulsions in n-propanol solutions and in the presence of lysozyme. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 127, 163-173.	2.3	8
43	The wetting and interfacial properties of alumina surface treated with dipalmitoylphosphatidylcholine and lipase enzyme. Powder Technology, 2011, 212, 332-339.	2.1	8
44	The impact of lignin addition on the properties of hybrid microspheres based on trimethoxyvinylsilane and divinylbenzene. European Polymer Journal, 2019, 120, 109200.	2.6	8
45	Investigation of the Electrokinetic Properties of Paraffin Suspension. 2. In Cationic and Anionic Surfactant Solutions. Langmuir, 2005, 21, 7662-7671.	1.6	7
46	Influence of dipalmitoylphosphatidylcholine (or dioleoylphosphatidylcholine) and phospholipase A2 enzyme on the properties of emulsions. Journal of Colloid and Interface Science, 2012, 373, 75-83.	5.0	7
47	The Influence of Polysaccharides/TiO2 on the Model Membranes of Dipalmitoylphosphatidylglycerol and Bacterial Lipids. Molecules, 2022, 27, 343.	1.7	7
48	Investigation of dialkyldimethylammonium bromides as stabilizers and/or emulsifiers for O/W emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 193, 51-60.	2.3	6
49	Electrokinetic properties of n-tetradecane/ethanol emulsions with DPPC and enzyme lipase or phospholipase A2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 332, 150-156.	2.3	5
50	Temperature-dependent interactions in the chitosan/cyclosporine A system at liquid–air interface. Journal of Thermal Analysis and Calorimetry, 2019, 138, 4513-4521.	2.0	5
51	Comparison of the Properties of Vegetable Oil/Water and n-Tetradecane/Water Emulsions Stabilized by \hat{l}_{\pm} -Lactalbumin or \hat{l}^{2} -Casein. Adsorption Science and Technology, 2005, 23, 777-789.	1.5	4
52	Structure and wettability of heterogeneous monomolecular films of phospholipids with cholesterol or lauryl gallate. Applied Surface Science, 2019, 493, 1021-1031.	3.1	4
53	Model studies on then-alkane emulsions stability. Progress in Colloid and Polymer Science, 1997, 105, 260-267.	0.5	4
54	Wettability and Stability of Naproxen, Ibuprofen and/or Cyclosporine A/Silica Delivery Systems. Colloids and Interfaces, 2022, 6, 11.	0.9	4

#	Article	IF	CITATIONS
55	The effect of chitosan/TiO2/hyaluronic acid subphase on the behaviour of 1,2-dioleoyl-sn-glycero-3-phosphocholine membrane. , 2022, , 212934.		3
56	WETTABILITY OF CHITOSAN-MODIFIED AND LIPID/POLYPEPTIDE-COATED PEEK SURFACES. Progress on Chemistry and Application of Chitin and Its Derivatives, 2019, XXIV, 172-182.	0.1	2
57	SURFACE CHARACTERISTICS OF DPPC MONOLAYERS DEPOSITED FROM TITANIUM DIOXIDE–CHITOSAN–HYALURONIC ACID SUBPHASES ON A GLASS SUPPORT. Progress on Chemistry and Application of Chitin and Its Derivatives, 2019, XXIV, 106-118.	0.1	2
58	BEHAVIOUR OF TiO2/CHITOSAN DISPERSION AS A FUNCTION OF SOLUTION ph. Progress on Chemistry and Application of Chitin and Its Derivatives, 2017, XXII, 27-41.	0.1	1
59	WETTABILITY OF HYBRID CHITOSAN/PHOSPHOLIPID COATINGS. Progress on Chemistry and Application of Chitin and Its Derivatives, 2017, XXII, 66-76.	0.1	1
60	WETTING PROPERTIES OF CHITOSAN-MODIFIED AND PLASMA-TREATED PEEK SURFACES. Progress on Chemistry and Application of Chitin and Its Derivatives, 2018, XXIII, 159-169.	0.1	1
61	EFFECT OF CHITOSAN AND LIPID LAYERS DEPOSITED ONTO POLYETHYLENE TEREPHTHALATE (PET) ON ITS WETTING PROPERTIES. Progress on Chemistry and Application of Chitin and Its Derivatives, 2021, 26, 210-221.	0.1	O
62	CHARACTERIZATION OF MIXED LANGMUIR MONOLAYERS OF CYCLOSPORINE A WITH THE PHOSPHOLIPID DPPC AT THE CHITOSAN SUBPHASE. Progress on Chemistry and Application of Chitin and Its Derivatives, 2020, XXV, 227-235.	0.1	0