

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5949033/publications.pdf Version: 2024-02-01

S-V VA11

#	Article	IF	CITATIONS
1	Chronic consumption of a high linoleic acid diet during pregnancy, lactation and post-weaning period increases depression-like behavior in male, but not female offspring. Behavioural Brain Research, 2022, 416, 113538.	1.2	5
2	Central Adiponectin Signaling – A Metabolic Regulator in Support of Brain Plasticity. Brain Plasticity, 2022, 8, 79-96.	1.9	12
3	Synergistic effects of two naturally occurring iridoids in eliciting a rapid antidepressant action by upâ€regulating hippocampal PACAP signalling. British Journal of Pharmacology, 2022, 179, 4078-4091.	2.7	11
4	Altered Cytokine and BDNF Levels in Individuals with Autism Spectrum Disorders. Brain Sciences, 2022, 12, 460.	1.1	7
5	The Role of MicroRNA and Microbiota in Depression and Anxiety. Frontiers in Behavioral Neuroscience, 2022, 16, 828258.	1.0	16
6	Restorative Action of Vitamin D3 on Motor Dysfunction Through Enhancement of Neurotrophins and Antioxidant Expression in the Striatum. Neuroscience, 2022, 492, 67-81.	1.1	4
7	AdipoRon Treatment Induces a Dose-Dependent Response in Adult Hippocampal Neurogenesis. International Journal of Molecular Sciences, 2021, 22, 2068.	1.8	11
8	Integrity of the uncinate fasciculus is associated with the onset of bipolar disorder: a 6-year followed-up study. Translational Psychiatry, 2021, 11, 111.	2.4	11
9	In Pursuit of Healthy Aging: Effects of Nutrition on Brain Function. International Journal of Molecular Sciences, 2021, 22, 5026.	1.8	26
10	Chronic AdipoRon Treatment Mimics the Effects of Physical Exercise on Restoring Hippocampal Neuroplasticity in Diabetic Mice. Molecular Neurobiology, 2021, 58, 4666-4681.	1.9	16
11	PM2.5 as a potential risk factor for autism spectrum disorder: Its possible link to neuroinflammation, oxidative stress and changes in gene expression. Neuroscience and Biobehavioral Reviews, 2021, 128, 534-548.	2.9	17
12	Effects of aerobic exercise on gut microbiota in adolescents with subthreshold mood syndromes and healthy adolescents: A 12-week, randomized controlled trial. Journal of Affective Disorders, 2021, 293, 363-372.	2.0	10
13	From Obesity to Hippocampal Neurodegeneration: Pathogenesis and Non-Pharmacological Interventions. International Journal of Molecular Sciences, 2021, 22, 201.	1.8	35
14	Inflammation, brain structure and cognition interrelations among individuals with differential risks for bipolar disorder. Brain, Behavior, and Immunity, 2020, 83, 192-199.	2.0	11
15	Role of omegaâ€6 and omegaâ€3 fatty acids in fetal programming. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 907-915.	0.9	49
16	Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Frontiers in Cellular Neuroscience, 2020, 14, 576444.	1.8	114
17	Potential Involvement of Adiponectin Signaling in Regulating Physical Exercise-Elicited Hippocampal Neurogenesis and Dendritic Morphology in Stressed Mice. Frontiers in Cellular Neuroscience, 2020, 14, 189.	1.8	13
18	Potential exerkines for physical exercise-elicited pro-cognitive effects: Insight from clinical and animal research. International Review of Neurobiology, 2019, 147, 361-395.	0.9	24

S-Y Yau

#	Article	IF	CITATIONS
19	Preface. International Review of Neurobiology, 2019, 147, xiii-xiv.	0.9	Ο
20	The Novel Perspectives of Adipokines on Brain Health. International Journal of Molecular Sciences, 2019, 20, 5638.	1.8	59
21	Enhancement of Hippocampal Plasticity by Physical Exercise as a Polypill for Stress and Depression: A Review. CNS and Neurological Disorders - Drug Targets, 2019, 18, 294-306.	0.8	17
22	Increasing Adiponergic System Activity as a Potential Treatment for Depressive Disorders. Molecular Neurobiology, 2019, 56, 7966-7976.	1.9	19
23	Effects of Maternal Voluntary Wheel Running During Pregnancy on Adult Hippocampal Neurogenesis, Temporal Order Memory, and Depression-Like Behavior in Adult Female and Male Offspring. Frontiers in Neuroscience, 2019, 13, 470.	1.4	17
24	The Neurophysiological and Psychological Mechanisms of Qigong as a Treatment for Depression: A Systematic Review and Meta-Analysis. Frontiers in Psychiatry, 2019, 10, 820.	1.3	31
25	Chronic minocycline treatment improves hippocampal neuronal structure, NMDA receptor function, and memory processing in Fmr1 knockout mice. Neurobiology of Disease, 2018, 113, 11-22.	2.1	21
26	Effects of Voluntary Exercise on Cell Proliferation and Neurogenesis in the Dentate Gyrus of Adult FMR1 Knockout Mice. Brain Plasticity, 2018, 4, 185-195.	1.9	15
27	Adiponectin Mediates Running-Restored Hippocampal Neurogenesis in Streptozotocin-Induced Type 1 Diabetes in Mice. Frontiers in Neuroscience, 2018, 12, 679.	1.4	27
28	Adipokine Profiling in Adult Women With Central Obesity and Hypertension. Frontiers in Physiology, 2018, 9, 294.	1.3	7
29	Fragile-X Syndrome Is Associated With NMDA Receptor Hypofunction and Reduced Dendritic Complexity in Mature Dentate Granule Cells. Frontiers in Molecular Neuroscience, 2018, 11, 495.	1.4	16
30	Characteristic analyses of a neural differentiation model from iPSC-derived neuron according to morphology, physiology, and global gene expression pattern. Scientific Reports, 2017, 7, 12233.	1.6	73
31	Physical Exercise. , 2016, , 75-107.		0
32	Neurological Disorders. , 2016, , 249-275.		0
33	Chronic corticosterone administration reduces dendritic complexity in mature, butÂnot young granule cells in the rat dentate gyrus. Restorative Neurology and Neuroscience, 2016, 34, 849-857.	0.4	12
34	Impaired bidirectional NMDA receptor dependent synaptic plasticity in the dentate gyrus of adult female Fmr1 heterozygous knockout mice. Neurobiology of Disease, 2016, 96, 261-270.	2.1	25
35	Voluntary Wheel Running Reverses the Decrease in Subventricular Zone Neurogenesis Caused by Corticosterone. Cell Transplantation, 2016, 25, 1979-1986.	1.2	30
36	Chronic minocycline treatment improves social recognition memory in adult male Fmr1 knockout mice. Behavioural Brain Research, 2016, 312, 77-83.	1.2	11

S-Y YAU

#	Article	IF	CITATIONS
37	Hippocampal dysfunction and cognitive impairment in Fragile-X Syndrome. Neuroscience and Biobehavioral Reviews, 2016, 68, 563-574.	2.9	59
38	Optimizing Differentiation Protocols for Producing Dopaminergic Neurons from Human Induced Pluripotent Stem Cells for Tissue Engineering Applications. Biomarker Insights, 2015, 10s1, BMI.S20064.	1.0	17
39	Involvement of Adult Hippocampal Neurogenesis in Learning and Forgetting. Neural Plasticity, 2015, 2015, 1-13.	1.0	116
40	Adult neurogenic and antidepressant effects of adiponectin: a potential replacement for exercise?. CNS and Neurological Disorders - Drug Targets, 2015, 14, 1129-1144.	0.8	12
41	Fat cell-secreted adiponectin mediates physical exercise-induced hippocampal neurogenesis: an alternative anti-depressive treatment?. Neural Regeneration Research, 2015, 10, 7.	1.6	18
42	Physical Exercise-Induced Adult Neurogenesis: A Good Strategy to Prevent Cognitive Decline in Neurodegenerative Diseases?. BioMed Research International, 2014, 2014, 1-20.	0.9	82
43	Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15810-15815.	3.3	238
44	Aerobic exercise interacts with neurotrophic factors to predict cognitive functioning in adolescents. Psychoneuroendocrinology, 2014, 39, 214-224.	1.3	50
45	Sustained Running in Rats Administered Corticosterone Prevents the Development of Depressive Behaviors and Enhances Hippocampal Neurogenesis and Synaptic Plasticity without Increasing Neurotrophic Factor Levels. Cell Transplantation, 2014, 23, 481-492.	1.2	40
46	Adult Neurogenesis and Dendritic Remodeling in Hippocampal Plasticity: Which One is more Important?. Cell Transplantation, 2014, 23, 471-479.	1.2	7
47	Differential behavioral outcome of anxiety tests in runner rats treated with corticosterone. Journal of Neuroscience and Behavioral Health, 2013, 5, 5-12.	0.1	4
48	Synaptic Plasticity, But not Hippocampal Neurogenesis, Mediated the Counteractive Effect of Wolfberry on Depression in Rats. Cell Transplantation, 2012, 21, 2635-2649.	1.2	29
49	Effects of voluntary running on plasma levels of neurotrophins, hippocampal cell proliferation and learning and memory in stressed rats. Neuroscience, 2012, 222, 289-301.	1.1	64
50	Reproduction: A New Venue for Studying Function of Adult Neurogenesis?. Cell Transplantation, 2011, 20, 21-35.	1.2	18
51	Adult Hippocampal Neurogenesis: A Possible Way how Physical Exercise Counteracts Stress. Cell Transplantation, 2011, 20, 99-111.	1.2	65
52	Effect of Corticosterone and Paroxetine on Masculine Mating Behavior: Possible Involvement of Neurogenesis. Journal of Sexual Medicine, 2011, 8, 1390-1403.	0.3	36
53	Adiponectin protects rat hippocampal neurons against excitotoxicity. Age, 2011, 33, 155-165.	3.0	67
54	Hippocampal Neurogenesis and Dendritic Plasticity Support Running-Improved Spatial Learning and Depression-Like Behaviour in Stressed Rats. PLoS ONE, 2011, 6, e24263.	1.1	127

S-Y YAU

#	Article	IF	CITATIONS
55	Intracerebroventricular infusion of cytosine-arabinoside causes prepulse inhibition disruption. NeuroReport, 2009, 20, 371-377.	0.6	19
56	Enhanced Survival of Melanopsin-expressing Retinal Ganglion Cells After Injury is Associated with the PI3ÂK/Akt Pathway. Cellular and Molecular Neurobiology, 2008, 28, 1095-1107.	1.7	55
57	Optic disc oval ness, refractive error and axial length of Hong Kong Chinese. Australasian journal of optometry, The, 1996, 79, 167-172.	0.6	0