List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5949000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stain-Free technology as a normalization tool in Western blot analysis. Analytical Biochemistry, 2013, 433, 105-111.	2.4	320
2	The <i>Saccharomyces cerevisiae</i> Ku Autoantigen Homologue Affects Radiosensitivity Only in the Absence of Homologous Recombination. Genetics, 1996, 142, 91-102.	2.9	177
3	Current concepts in clinical radiation oncology. Radiation and Environmental Biophysics, 2014, 53, 1-29.	1.4	143
4	Immortalization and characterization of Nijmegen Breakage Syndrome fibroblasts. Mutation Research DNA Repair, 1999, 434, 17-27.	3.7	98
5	A laser-driven nanosecond proton source for radiobiological studies. Applied Physics Letters, 2012, 101, .	3.3	87
6	Genetic interactions between mutants of the `error-prone' repair group of Saccharomyces cerevisiae and their effect on recombination and mutagenesis. Mutation Research DNA Repair, 1998, 407, 135-145.	3.7	86
7	Microirradiation of cells with energetic heavy ions. Radiation and Environmental Biophysics, 2004, 42, 237-245.	1.4	79
8	Survival of tumor cells after proton irradiation with ultra-high dose rates. Radiation Oncology, 2011, 6, 139.	2.7	77
9	Differences in the kinetics of γ-H2AX fluorescence decay after exposure to low and high LET radiation. International Journal of Radiation Biology, 2010, 86, 682-691.	1.8	74
10	Radiobiology of the FLASH effect. Medical Physics, 2022, 49, 1993-2013.	3.0	72
11	Spatial Dynamics of DNA Damage Response Protein Foci along the Ion Trajectory of High-LET Particles. Radiation Research, 2011, 176, 706-715.	1.5	66
12	Role for hACF1 in the G2/M damage checkpoint. Nucleic Acids Research, 2011, 39, 8445-8456.	14.5	62
13	Deletion of the SRS2 gene suppresses elevated recombination and DNA damage sensitivity in rad5 and rad18 mutants of Saccharomyces cerevisiae. Mutation Research DNA Repair, 2001, 486, 137-146.	3.7	60
14	Chromatin organization revealed by nanostructure of irradiation induced γH2AX, 53BP1 and Rad51 foci. Scientific Reports, 2017, 7, 40616.	3.3	59
15	Double-strand break-induced transcriptional silencing is associated with loss of tri-methylation at H3K4. Chromosome Research, 2011, 19, 883-899.	2.2	57
16	No Evidence for a Different RBE between Pulsed and Continuous 20 MeV Protons. Radiation Research, 2009, 172, 567-574.	1.5	52
17	Aurora kinase inhibitor ZM447439 induces apoptosis via mitochondrial pathways. Biochemical Pharmacology, 2010, 79, 122-129.	4.4	51
18	Role of Artemis in DSB repair and guarding chromosomal stability following exposure to ionizing radiation at different stages of cell cycle. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 615, 111-124.	1.0	48

#	Article	IF	CITATIONS
19	Recruitment Kinetics of DNA Repair Proteins Mdc1 and Rad52 but Not 53BP1 Depend on Damage Complexity. PLoS ONE, 2012, 7, e41943.	2.5	47
20	PARP1 inhibition radiosensitizes HNSCC cells deficient in homologous recombination by disabling the DNA replication fork elongation response. Oncotarget, 2016, 7, 9732-9741.	1.8	44
21	The Effectiveness of 20ÂMeV Protons at Nanosecond Pulse Lengths in Producing Chromosome Aberrations in Human-Hamster Hybrid Cells. Radiation Research, 2011, 175, 719-727.	1.5	42
22	The live cell irradiation and observation setup at SNAKE. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2090-2097.	1.4	39
23	Subdiffusion Supports Joining Of Correct Ends During Repair Of DNA Double-Strand Breaks. Scientific Reports, 2013, 3, 2511.	3.3	36
24	Establishing mechanisms affecting the individual response to ionizing radiation. International Journal of Radiation Biology, 2020, 96, 297-323.	1.8	34
25	Radiation-Induced Chromosome Aberrations in Saccharomyces cerevisiae: Influence of DNA Repair Pathways. Genetics, 1998, 148, 975-988.	2.9	34
26	A New Nanobody-Based Biosensor to Study Endogenous PARP1 In Vitro and in Live Human Cells. PLoS ONE, 2016, 11, e0151041.	2.5	34
27	Nanoscopic exclusion between Rad51 and 53BP1 after ion irradiation in human HeLa cells. Physical Biology, 2015, 12, 066005.	1.8	30
28	The WST survival assay: an easy and reliable method to screen radiation-sensitive individuals. Radiation Protection Dosimetry, 2011, 143, 487-490.	0.8	29
29	The YeastTEL1Gene Partially Substitutes for HumanATMin Suppressing Hyperrecombination, Radiation-Induced Apoptosis and Telomere Shortening in A-T Cells. Molecular Biology of the Cell, 2000, 11, 2605-2616.	2.1	28
30	Subtelomeric Repeat Amplification Is Associated With Growth at Elevated Temperature in yku70 Mutants of Saccharomyces cerevisiae. Genetics, 2000, 154, 1039-1051.	2.9	28
31	Competition effect in DNA damage response. Radiation and Environmental Biophysics, 2008, 47, 423-429.	1.4	24
32	A novel HSP90 inhibitor with reduced hepatotoxicity synergizes with radiotherapy to induce apoptosis, abrogate clonogenic survival, and improve tumor control in models of colorectal cancer. Oncotarget, 2016, 7, 43199-43219.	1.8	24
33	Quantitative analysis of DNA-damage response factors after sequential ion microirradiation. Radiation and Environmental Biophysics, 2008, 47, 415-422.	1.4	22
34	Nanoscopic analysis of 53BP1, BRCA1 and Rad51 reveals new insights in temporal progression of DNA-repair and pathway choice. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2019, 816-818, 111675.	1.0	22
35	Computer simulation of pulsed field gel runs allows the quantitation of radiation-induced double-strand breaks in yeast. Electrophoresis, 1994, 15, 128-136.	2.4	21
36	Genomic amplification of Fanconi anemia complementation group A (FancA) in head and neck squamous cell carcinoma (HNSCC): Cellular mechanisms of radioresistance and clinical relevance. Cancer Letters, 2017, 386, 87-99.	7.2	21

#	Article	IF	CITATIONS
37	An electrophoretic approach to the assessment of the spatial distribution of DNA double-strand breaks in mammalian cells. Electrophoresis, 1995, 16, 1865-1874.	2.4	20
38	Radiation-induced alterations of histone post-translational modification levels in lymphoblastoid cell lines. Radiation Oncology, 2014, 9, 15.	2.7	20
39	Live cell imaging at the Munich ion microbeam SNAKE – a status report. Radiation Oncology, 2015, 10, 42.	2.7	18
40	A feasibility study of zebrafish embryo irradiation with laser-accelerated protons. Review of Scientific Instruments, 2020, 91, 063303.	1.3	18
41	New challenges in radiobiology research with microbeams. Radiation and Environmental Biophysics, 2011, 50, 335-338.	1.4	16
42	Promoter-trapping in Saccharomyces cerevisiae by radiation-assisted fragment insertion. Nucleic Acids Research, 2002, 30, 136e-136.	14.5	15
43	LNT: a never-ending story. Radiation and Environmental Biophysics, 2006, 44, 241-244.	1.4	15
44	Focused Ion Microbeam Irradiation Induces Clustering of DNA Double-Strand Breaks in Heterochromatin Visualized by Nanoscale-Resolution Electron Microscopy. International Journal of Molecular Sciences, 2021, 22, 7638.	4.1	15
45	Depletion of Histone Demethylase Jarid1A Resulting in Histone Hyperacetylation and Radiation Sensitivity Does Not Affect DNA Double-Strand Break Repair. PLoS ONE, 2016, 11, e0156599.	2.5	15
46	Radiation-induced alterations in histone modification patterns and their potential impact on short-term radiation effects. Frontiers in Oncology, 2012, 2, 117.	2.8	12
47	Local inhibition of rRNA transcription without nucleolar segregation after targeted ion irradiation of the nucleolus. Journal of Cell Science, 2019, 132, .	2.0	12
48	Inhibition of HSP90 as a Strategy to Radiosensitize Glioblastoma: Targeting the DNA Damage Response and Beyond. Frontiers in Oncology, 2021, 11, 612354.	2.8	12
49	DNA Integration by Ty Integrase in <i>yku70</i> Mutant <i>Saccharomyces cerevisiae</i> Cells. Molecular and Cellular Biology, 2000, 20, 8836-8844.	2.3	11
50	Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. International Journal of Radiation Biology, 2019, 95, 452-479.	1.8	10
51	Use of Pulsed-Field Gel Electrophoresis for Studies of DNA Double-Strand Break Repair in the Yeast Saccharomyces cerevisiae. Methods, 1995, 7, 205-218.	3.8	9
52	Ty1 integrase overexpression leads to integration of non-Ty1 DNA fragments into the genome of Saccharomyces cerevisiae. Molecular Genetics and Genomics, 2010, 284, 231-242.	2.1	9
53	Hydrogen microscopy and analysis of DNA repair using focused high energy ion beams. Nuclear Instruments & Methods in Physics Research B, 2006, 249, 270-277.	1.4	8
54	Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE. Nuclear Instruments & Methods in Physics Research B, 2015, 348, 137-142.	1.4	8

#	Article	IF	CITATIONS
55	Methods for quantitative evaluation of dynamics of repair proteins within irradiated cells. Nuclear Instruments & Methods in Physics Research B, 2006, 245, 298-301.	1.4	7
56	Coordinated radiation protection research in Europe: is it the beginning of a new era?. Radiation and Environmental Biophysics, 2018, 57, 1-4.	1.4	7
57	The inter-individual variability outperforms the intra-individual variability of differentially expressed proteins prior and post irradiation in lymphoblastoid cell lines. Archives of Physiology and Biochemistry, 2014, 120, 198-207.	2.1	6
58	Dose limits for occupational exposure to ionising radiation and genotoxic carcinogens: a German perspective. Radiation and Environmental Biophysics, 2020, 59, 9-27.	1.4	6
59	Development of a model for fibroblast-led collective migration from breast cancer cell spheroids to study radiation effects on invasiveness. Radiation Oncology, 2021, 16, 159.	2.7	5
60	Chromosomal localization of the HYP2-gene inSaccharomyces cerevisiae and use of pulsed-field gel electrophoresis for detection of irregular recombination events in gene disruption experiments. Electrophoresis, 1992, 13, 651-653.	2.4	4
61	A novel radiosensitive SCID patient with a pronounced G2/M sensitivity. DNA Repair, 2010, 9, 365-373.	2.8	3
62	Application of Laser-Driven Beams for Radiobiological Experiments. , 2018, , 129-138.		3
63	Radiation-Induced Cell Killing Is Highly Dependent upon Buffer Treatment (Filtration Compared to) Tj ETQq1 1 C Research, 1996, 146, 232.).784314 r 1.5	gBT /Overlock 2
64	Ku and the Stability of the Genome. Journal of Biomedicine and Biotechnology, 2002, 2, 61-65.	3.0	2
65	Fifty years ago $\hat{a} \in $ Radiation and Environmental Biophysics, 2013, 52, 1-3.	1.4	2
66	Obituary Prof. Dr. Wolfgang Dörr (1959–2019). Radiation and Environmental Biophysics, 2020, 59, 1-1.	1.4	2
67	The Role of Chromatin Structure and Nuclear Architecture in the Cellular Response to DNA Double-Strand Breaks. , 2005, , 267-283.		1
68	Topological Factors in Radiation Biology. , 2004, , 69-77.		1
69	Welcome on B(b)oard. Radiation and Environmental Biophysics, 2005, 44, 159-159.	1.4	Ο
70	Editorial expression of concern regarding: Pilger A et al. (2004) No effects of intermittent 50ÂHz EMF on cytoplasmic free calcium and on the mitochondrial membrane potential in human diploid fibroblasts, Radiat Environ Biophys 43:203–207. Radiation and Environmental Biophysics, 2010, 49, 293-294.	1.4	0
71	50Âyears of Radiation and Environmental Biophysics: What were the hallmark papers?. Radiation and Environmental Biophysics, 2013, 52, 171-174.	1.4	0
72	Obituary Prof. Dr. Wolfgang Weiss (1946–2021). Radiation and Environmental Biophysics, 2021, 60, 685-688.	1.4	0

#	Article	IF	CITATIONS
73	A turning point in history: thinking about the unthinkable. Radiation and Environmental Biophysics, 2022, 61, 177-178.	1.4	0