Richard DREVET

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5948939/publications.pdf

Version: 2024-02-01

36 661 papers citations

15 25
h-index g-index

36 36 docs citations

36 times ranked 761 citing authors

#	Article	IF	CITATIONS
1	Electrodeposition of Calcium Phosphate Coatings on Metallic Substrates for Bone Implant Applications: A Review. Coatings, 2022, 12, 539.	2.6	22
2	Advanced Biomaterials and Coatings. Coatings, 2022, 12, 965.	2.6	3
3	Oxidation Behavior of the Skutterudite Material Yb0.2Co4Sb12. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3996-4002.	2.2	2
4	Effect of surface mechanical attrition treatment on the microstructure of cobalt–chromium–molybdenum biomedical alloy. Microscopy Research and Technique, 2021, 84, 238-245.	2.2	6
5	Aluminizing by pack cementation to protect CoSb3 from oxidation. Materials Chemistry and Physics, 2020, 241, 122417.	4.0	4
6	Oxidation Behavior of Microstructured and Nanostructured Co0.94Ni0.06Sb3 Thermoelectric Materials. Oxidation of Metals, 2020, 93, 559-572.	2.1	3
7	Pack cementation to prevent the oxidation of CoSb3 in air at 800ÂK. Surface and Coatings Technology, 2020, 385, 125401.	4.8	5
8	Electrodeposition of biphasic calcium phosphate coatings with improved dissolution properties. Materials Chemistry and Physics, 2019, 236, 121797.	4.0	11
9	Electrodeposition of cobalt-substituted calcium phosphate coatings on Ti22Nb6Zr alloy for bone implant applications. Journal of Alloys and Compounds, 2019, 793, 576-582.	5.5	20
10	Oxidation Behavior of the Skutterudite Material Ce0.75Fe3CoSb12. Oxidation of Metals, 2019, 91, 767-779.	2.1	11
11	Influence of the surface mechanical attrition treatment (SMAT) on the corrosion behavior of Co28Cr6Mo alloy in Ringer's solution. Journal of Solid State Electrochemistry, 2018, 22, 1091-1098.	2.5	16
12	Martensitic Transformations and Mechanical and Corrosion Properties of Fe-Mn-Si Alloys for Biodegradable Medical Implants. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1006-1013.	2.2	39
13	Tunable Corrosion Behavior of Calcium Phosphate Coated Fe-Mn-Si Alloys for Bone Implant Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 6553-6560.	2.2	11
14	Electrochemical behavior of CoSb3 in sulfuric and oxalic acids over the potential range 0 to 40ÂV. Journal of Solid State Electrochemistry, 2018, 22, 2821-2828.	2.5	3
15	Structural and morphological study of electrodeposited calcium phosphate materials submitted to thermal treatment. Materials Letters, 2017, 209, 27-31.	2.6	8
16	Harnessing Wharton's jelly stem cell differentiation into bone-like nodule on calcium phosphate substrate without osteoinductive factors. Acta Biomaterialia, 2017, 49, 575-589.	8.3	21
17	XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO2 thin films to produce a new hybrid material coating. Applied Surface Science, 2016, 384, 442-448.	6.1	8
18	Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates. Surface and Coatings Technology, 2016, 301, 94-99.	4.8	76

#	Article	IF	Citations
19	A New Process for the Thermal Treatment of Calcium Phosphate Coatings Electrodeposited on Ti6Al4V Substrate. Advanced Engineering Materials, 2015, 17, 1608-1615.	3.5	14
20	Electrophoretic Deposition of Hydroxyapatite and 58S Bioactive Glass Coatings on the Ti6Al4V Alloy Subjected to Surface Mechanical Attrition Treatment. Key Engineering Materials, 2015, 654, 149-153.	0.4	3
21	Metal organic precursor effect on the properties of SnO2 thin films deposited by MOCVD technique for electrochemical applications. Surface and Coatings Technology, 2015, 271, 234-241.	4.8	9
22	A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. Materials Science and Engineering C, 2015, 47, 407-412.	7.3	81
23	Human osteoblast-like cells response to pulsed electrodeposited calcium phosphate coatings. RSC Advances, 2013, 3, 11148.	3.6	15
24	Nanocrystallized SnO2 thin films deposited on Si and LaAlO3 substrates by pulsed-MOCVD technique for electrochemical applications. Surface and Coatings Technology, 2013, 230, 180-185.	4.8	7
25	Morphological modifications of electrodeposited calcium phosphate coatings under amino acids effect. Applied Surface Science, 2013, 268, 343-348.	6.1	27
26	Pulsed electrodeposition for the synthesis of strontium-substituted calcium phosphate coatings with improved dissolution properties. Materials Science and Engineering C, 2013, 33, 4260-4265.	7.3	33
27	Sol-gel synthesis of 45S5 bioglass – Prosthetic coating by electrophoretic deposition. MATEC Web of Conferences, 2013, 7, 04018.	0.2	0
28	Electrophoretic Deposition of Bioactive Glass Coatings on Ti12Mo5Ta Alloy. Key Engineering Materials, 2012, 507, 135-140.	0.4	10
29	Nanoscale Surface Modification of a Prosthetic Material: Case of Ti6Al4V into Ringer's Solution. Journal of Nanoscience and Nanotechnology, 2012, 12, 4956-4961.	0.9	3
30	In vitro corrosion behavior of electrodeposited calcium phosphate coatings on Ti6Al4V substrates. Journal of Solid State Electrochemistry, 2012, 16, 3069-3077.	2.5	29
31	A Simple Method to Assess Surface Roughness by Photothermal Investigation (PTR) Using an Effective Semitransparent Layer. International Journal of Thermophysics, 2012, 33, 1960-1965.	2.1	4
32	Thermal Treatment Optimization of Electrodeposited Hydroxyapatite Coatings on Ti6Al4V Substrate. Advanced Engineering Materials, 2012, 14, 377-382.	3.5	27
33	In vitro dissolution and corrosion study of calcium phosphate coatings elaborated by pulsed electrodeposition current on Ti6Al4V substrate. Journal of Materials Science: Materials in Medicine, 2011, 22, 753-761.	3.6	42
34	Structural Characterization of Electrodeposited Strontium Substituted Calcium Phosphate Coatings. Journal of Biomaterials and Tissue Engineering, 2011, 1, 68-75.	0.1	6
35	Effects of pulsed current and H2O2 amount on the composition of electrodeposited calcium phosphate coatings. Materials Characterization, 2010, 61, 786-795.	4.4	53
36	Elaboration of Monophasic and Biphasic Calcium Phosphate Coatings on Ti6Al4V Substrate by Pulsed Electrodeposition Current. Advanced Engineering Materials, 2010, 12, B192.	3.5	29