Wolfgang Petrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5948900/publications.pdf

Version: 2024-02-01

623734 713466 14 1,587 21 21 citations g-index h-index papers 21 21 21 2652 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Predicting the early risk of chronic kidney disease in patients with diabetes using real-world data. Nature Medicine, 2019, 25, 57-59.	30.7	120
2	On the role of interference in laserâ€based midâ€infrared widefield microspectroscopy. Journal of Biophotonics, 2018, 11, e201800015.	2.3	11
3	Biomedical applications of mid-infrared quantum cascade lasers – a review. Analyst, The, 2018, 143, 5888-5911.	3 . 5	48
4	Towards a quantum cascade laser-based implant for the continuous monitoring of glucose. Analyst, The, 2018, 143, 6025-6036.	3.5	13
5	Optical properties of porcine dermis in the mid-infrared absorption band of glucose. Analyst, The, 2017, 142, 1235-1243.	3 . 5	8
6	Translating vibrational spectroscopy into clinical applications – vision or reality?. Faraday Discussions, 2016, 187, 603-607.	3.2	5
7	Realâ€time midâ€infrared imaging of living microorganisms. Journal of Biophotonics, 2016, 9, 61-66.	2.3	31
8	A quantum cascade laser-based goniometer for the determination of tissue optical properties in the mid-infrared. Proceedings of SPIE, 2016 , , .	0.8	1
9	A fast recoiling silk-like elastomer facilitates nanosecond nematocyst discharge. BMC Biology, 2015, 13, 3.	3.8	34
10	Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser. Optics Express, 2015, 23, 5670.	3.4	22
11	Quantum cascade laser–based hyperspectral imaging of biological tissue. Journal of Biomedical Optics, 2014, 19, 111607.	2.6	59
12	A Quantitative Look Inside the Body: Minimally Invasive Infrared Analysis in Vivo. Analytical Chemistry, 2014, 86, 10511-10514.	6.5	24
13	Fluorescence Properties of Carba Nicotinamide Adenine Dinucleotide for Glucose Sensing. ChemPhysChem, 2012, 13, 1302-1306.	2.1	10
14	Effective Fragment Potential Study of the Influence of Hydration on the Vibrational Spectrum of Glucose. Journal of Physical Chemistry A, 2011, 115, 12373-12379.	2.5	10
15	Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro. Analyst, The, 2011, 136, 1192.	3.5	45
16	A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics, 2009, 10, 213.	2.6	804
17	Multivariate feature selection and hierarchical classification for infrared spectroscopy: serum-based detection of bovine spongiform encephalopathy. Analytical and Bioanalytical Chemistry, 2007, 387, 1801-1807.	3.7	55
18	Antemortem Identification of Bovine Spongiform Encephalopathy from Serum Using Infrared Spectroscopy. Analytical Chemistry, 2003, 75, 6673-6678.	6.5	68

#	Article	IF	CITATIONS
19	Correlation between the state of health of blood donors and the corresponding mid-infrared spectra of the serum. Vibrational Spectroscopy, 2002, 28, 117-129.	2.2	34
20	MID-INFRARED AND RAMAN SPECTROSCOPY FOR MEDICAL DIAGNOSTICS. Applied Spectroscopy Reviews, 2001, 36, 181-237.	6.7	131
21	Disease pattern recognition in infrared spectra of human sera with diabetes mellitus as an example. Applied Optics, 2000, 39, 3372.	2.1	54