
## Herve Claustre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/594865/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Biological production in two contrasted regions of the Mediterranean Sea during the oligotrophic<br>period: an estimate based on the diel cycle of optical properties measured by BioGeoChemical-Argo<br>profiling floats. Biogeosciences, 2022, 19, 1165-1194. | 1.3 | 4         |
| 2  | Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean. Biogeosciences, 2022, 19, 1245-1275.                                                                                                     | 1.3 | 15        |
| 3  | <scp>The Underwater Vision Profiler 6: an imaging sensor of particle size spectra and plankton, for<br/>autonomous and cabled platforms</scp> . Limnology and Oceanography: Methods, 2022, 20, 115-129.                                                         | 1.0 | 42        |
| 4  | Biogeographical Classification of the Global Ocean From BGCâ€Argo Floats. Global Biogeochemical<br>Cycles, 2022, 36, .                                                                                                                                          | 1.9 | 6         |
| 5  | OneArgo: A New Paradigm for Observing the Global Ocean. Marine Technology Society Journal, 2022, 56, 84-90.                                                                                                                                                     | 0.3 | 5         |
| 6  | Deep Chlorophyll Maxima in the Global Ocean: Occurrences, Drivers and Characteristics. Global<br>Biogeochemical Cycles, 2021, 35, e2020GB006759.                                                                                                                | 1.9 | 69        |
| 7  | The MALINA oceanographic expedition: how do changes in ice cover, permafrost and UV radiation impact biodiversity and biogeochemical fluxes in the Arctic Ocean?. Earth System Science Data, 2021, 13, 1561-1592.                                               | 3.7 | 11        |
| 8  | BGCâ€Argo Floats Observe Nitrate Injection and Spring Phytoplankton Increase in the Surface Layer of<br>Levantine Sea (Eastern Mediterranean). Geophysical Research Letters, 2021, 48, e2020GL091649.                                                           | 1.5 | 5         |
| 9  | Impact of Mesoscale Eddies on Deep Chlorophyll Maxima. Geophysical Research Letters, 2021, 48, e2021GL093470.                                                                                                                                                   | 1.5 | 22        |
| 10 | Correction of Biogeochemical-Argo Radiometry for Sensor Temperature-Dependence and Drift:<br>Protocols for a Delayed-Mode Quality Control. Sensors, 2021, 21, 6217.                                                                                             | 2.1 | 4         |
| 11 | The Oceans' Biological Carbon Pumps: Framework for a Research Observational Community Approach.<br>Frontiers in Marine Science, 2021, 8, .                                                                                                                      | 1.2 | 21        |
| 12 | Hyperspectral Radiometry on Biogeochemical-Argo Floats: A Bright Perspective for Phytoplankton<br>Diversity. Oceanography, 2021, , 90-91.                                                                                                                       | 0.5 | 7         |
| 13 | Observing the Global Ocean with Biogeochemical-Argo. Annual Review of Marine Science, 2020, 12, 23-48.                                                                                                                                                          | 5.1 | 155       |
| 14 | Enhancement of phytoplankton biomass leeward of Tahiti as observed by Biogeochemical-Argo floats.<br>Journal of Marine Systems, 2020, 204, 103284.                                                                                                              | 0.9 | 5         |
| 15 | Arctic mid-winter phytoplankton growth revealed by autonomous profilers. Science Advances, 2020,<br>6, .                                                                                                                                                        | 4.7 | 33        |
| 16 | Preparing the New Phase of Argo: Technological Developments on Profiling Floats in the NAOS<br>Project. Frontiers in Marine Science, 2020, 7, .                                                                                                                 | 1.2 | 9         |
| 17 | Detection of Coccolithophore Blooms With BioGeoChemicalâ€Argo Floats. Geophysical Research<br>Letters, 2020, 47, e2020GL090559.                                                                                                                                 | 1.5 | 24        |
| 18 | Organic Carbon Export and Loss Rates in the Red Sea. Global Biogeochemical Cycles, 2020, 34, e2020GB006650.                                                                                                                                                     | 1.9 | 17        |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A Regional Neural Network Approach to Estimate Water-Column Nutrient Concentrations and<br>Carbonate System Variables in the Mediterranean Sea: CANYON-MED. Frontiers in Marine Science, 2020,<br>7, . | 1.2  | 25        |
| 20 | Argo Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations<br>From a Global Array of Profiling Floats. Frontiers in Marine Science, 2020, 7, .                | 1.2  | 117       |
| 21 | Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean. Elementa, 2020, 8, .                                                                                              | 1.1  | 45        |
| 22 | Preparing the New Phase of Argo: Scientific Achievements of the NAOS Project. Frontiers in Marine Science, 2020, 7, .                                                                                  | 1.2  | 10        |
| 23 | Monitoring ocean biogeochemistry with autonomous platforms. Nature Reviews Earth & Environment, 2020, 1, 315-326.                                                                                      | 12.2 | 114       |
| 24 | Detecting Mesopelagic Organisms Using Biogeochemicalâ€Argo Floats. Geophysical Research Letters,<br>2020, 47, e2019GL086088.                                                                           | 1.5  | 20        |
| 25 | Major role of particle fragmentation in regulating biological sequestration of CO <sub>2</sub> by the oceans. Science, 2020, 367, 791-793.                                                             | 6.0  | 140       |
| 26 | Biogeochemical Argo: The Test Case of the NAOS Mediterranean Array. Frontiers in Marine Science, 2020, 7, .                                                                                            | 1.2  | 16        |
| 27 | Relaxation of Wind Stress Drives the Abrupt Onset of Biological Carbon Uptake in the Kerguelen<br>Bloom: A Multisensor Approach. Geophysical Research Letters, 2020, 47, e2019GL085992.                | 1.5  | 15        |
| 28 | The oceans' twilight zone must be studied now, before it is too late. Nature, 2020, 580, 26-28.                                                                                                        | 13.7 | 73        |
| 29 | Green Edge ice camp campaigns: understanding the processes controlling the under-ice Arctic phytoplankton spring bloom. Earth System Science Data, 2020, 12, 151-176.                                  | 3.7  | 32        |
| 30 | The suspended small-particle layer in the oxygen-poor Black Sea: a proxy for delineating the effective<br>N <sub>2</sub> -yielding section. Biogeosciences, 2020, 17, 6491-6505.                       | 1.3  | 5         |
| 31 | On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array. Frontiers in Marine Science, 2019, 6, .                                                                                         | 1.2  | 235       |
| 32 | Global Variability of Optical Backscattering by Nonâ€ <b>e</b> lgal particles From a Biogeochemicalâ€Argo Data<br>Set. Geophysical Research Letters, 2019, 46, 9767-9776.                              | 1.5  | 41        |
| 33 | Small Phytoplankton Shapes Colored Dissolved Organic Matter Dynamics in the North Atlantic Subtropical Gyre. Geophysical Research Letters, 2019, 46, 12183-12191.                                      | 1.5  | 18        |
| 34 | A BGC-Argo Guide: Planning, Deployment, Data Handling and Usage. Frontiers in Marine Science, 2019, 6,                                                                                                 | 1.2  | 86        |
| 35 | Evaluating tropical phytoplankton phenology metrics using contemporary tools. Scientific Reports, 2019, 9, 674.                                                                                        | 1.6  | 26        |
| 36 | From Observation to Information and Users: The Copernicus Marine Service Perspective. Frontiers in Marine Science, 2019, 6, .                                                                          | 1.2  | 135       |

| #  | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Bio-optical characterization of subsurface chlorophyll maxima in the Mediterranean Sea from a<br>Biogeochemical-Argo float database. Biogeosciences, 2019, 16, 1321-1342.                                                                                                        | 1.3  | 43        |
| 38 | Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nature Communications, 2019, 10, 2451.                                                                                                                                                            | 5.8  | 79        |
| 39 | Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature, 2019, 568, 327-335.                                                                                                                                                                                | 13.7 | 455       |
| 40 | Community‣evel Responses to Iron Availability in Open Ocean Plankton Ecosystems. Global<br>Biogeochemical Cycles, 2019, 33, 391-419.                                                                                                                                             | 1.9  | 76        |
| 41 | The Intraseasonal Dynamics of the Mixed Layer Pump in the Subpolar North Atlantic Ocean: A<br>Biogeochemicalâ€Argo Float Approach. Global Biogeochemical Cycles, 2019, 33, 266-281.                                                                                              | 1.9  | 44        |
| 42 | A compilation of global bio-optical in situ data for ocean-colour satellite applications – version two.<br>Earth System Science Data, 2019, 11, 1037-1068.                                                                                                                       | 3.7  | 43        |
| 43 | Toward deeper development of Biogeochemical-Argo floats. Atmospheric and Oceanic Science Letters, 2018, 11, 287-290.                                                                                                                                                             | 0.5  | 4         |
| 44 | Understanding the Dynamics of the Oxicâ€Anoxic Interface in the Black Sea. Geophysical Research<br>Letters, 2018, 45, 864-871.                                                                                                                                                   | 1.5  | 27        |
| 45 | Assessing the Variability in the Relationship Between the Particulate Backscattering Coefficient and the Chlorophyll <i>a</i> Concentration From a Global Biogeochemicalâ€Argo Database. Journal of Geophysical Research: Oceans, 2018, 123, 1229-1250.                          | 1.0  | 55        |
| 46 | Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom. Nature Communications, 2018, 9, 190.                                                                                                                                                     | 5.8  | 65        |
| 47 | ProVal: A New Autonomous Profiling Float for High Quality Radiometric Measurements. Frontiers in<br>Marine Science, 2018, 5, .                                                                                                                                                   | 1.2  | 29        |
| 48 | An Alternative to Static Climatologies: Robust Estimation of Open Ocean CO2 Variables and Nutrient<br>Concentrations From T, S, and O2 Data Using Bayesian Neural Networks. Frontiers in Marine Science,<br>2018, 5, .                                                           | 1.2  | 100       |
| 49 | Silicon cycle in the tropical South Pacific: contribution to the global Si cycle and evidence for an active pico-sized siliceous plankton. Biogeosciences, 2018, 15, 5595-5620.                                                                                                  | 1.3  | 14        |
| 50 | Improved correction for non-photochemical quenching of in situ chlorophyll fluorescence based on a synchronous irradiance profile. Optics Express, 2018, 26, 24734.                                                                                                              | 1.7  | 50        |
| 51 | Beyond Chlorophyll Fluorescence: The Time is Right to Expand Biological Measurements in Ocean<br>Observing Programs. Limnology and Oceanography Bulletin, 2018, 27, 89-90.                                                                                                       | 0.2  | 25        |
| 52 | Physical and Biogeochemical Controls of the Phytoplankton Blooms in North Western Mediterranean<br>Sea: A Multiplatform Approach Over a Complete Annual Cycle (2012–2013 DEWEX Experiment). Journal<br>of Geophysical Research: Oceans, 2017, 122, 9999-10019.                   | 1.0  | 56        |
| 53 | Delineating environmental control of phytoplankton biomass and phenology in the Southern Ocean.<br>Geophysical Research Letters, 2017, 44, 5016-5024.                                                                                                                            | 1.5  | 79        |
| 54 | Bioâ€optical anomalies in the world's oceans: An investigation on the diffuse attenuation coefficients<br>for downward irradiance derived from <scp>B</scp> iogeochemical <scp>A</scp> rgo float<br>measurements. Journal of Geophysical Research: Oceans, 2017, 122, 3543-3564. | 1.0  | 44        |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Influence of the Phytoplankton Community Structure on the Spring and Annual Primary Production<br>in the Northwestern Mediterranean Sea. Journal of Geophysical Research: Oceans, 2017, 122, 9918-9936.                                          | 1.0 | 40        |
| 56 | Unexpected winter phytoplankton blooms in the North Atlantic subpolar gyre. Nature Geoscience, 2017, 10, 836-839.                                                                                                                                | 5.4 | 52        |
| 57 | Water intrusions and particle signatures in the Black Sea: a Biogeochemical-Argo float investigation.<br>Ocean Dynamics, 2017, 67, 1119-1136.                                                                                                    | 0.9 | 23        |
| 58 | Particulate concentration and seasonal dynamics in the mesopelagic ocean based on the<br>backscattering coefficient measured with Biogeochemicalâ€Argo floats. Geophysical Research Letters,<br>2017, 44, 6933-6939.                             | 1.5 | 27        |
| 59 | Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll<br>fluorometers: A global analysis of WET Labs ECO sensors. Limnology and Oceanography: Methods,<br>2017, 15, 572-585.                                     | 1.0 | 191       |
| 60 | Correction of profiles of inâ€situ chlorophyll fluorometry for the contribution of fluorescence<br>originating from nonâ€algal matter. Limnology and Oceanography: Methods, 2017, 15, 80-93.                                                     | 1.0 | 44        |
| 61 | Estimates of Water-Column Nutrient Concentrations and Carbonate System Parameters in the Global<br>Ocean: A Novel Approach Based on Neural Networks. Frontiers in Marine Science, 2017, 4, .                                                     | 1.2 | 71        |
| 62 | Assessing Pigment-Based Phytoplankton Community Distributions in the Red Sea. Frontiers in Marine Science, 2017, 4, .                                                                                                                            | 1.2 | 45        |
| 63 | Plankton Assemblage Estimated with BGCâ€Argo Floats in the Southern Ocean: Implications for Seasonal Successions and Particle Export. Journal of Geophysical Research: Oceans, 2017, 122, 8278-8292.                                             | 1.0 | 42        |
| 64 | Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications. Earth System Science Data, 2017, 9, 861-880.                                                                                      | 3.7 | 42        |
| 65 | Interannual variability of the Mediterranean trophic regimes from ocean color satellites.<br>Biogeosciences, 2016, 13, 1901-1917.                                                                                                                | 1.3 | 63        |
| 66 | A neural networkâ€based method for merging ocean color and Argo data to extend surface bioâ€optical properties to depth: Retrieval of the particulate backscattering coefficient. Journal of Geophysical Research: Oceans, 2016, 121, 2552-2571. | 1.0 | 50        |
| 67 | Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nature Geoscience, 2016, 9, 820-823.                                                                                                                   | 5.4 | 106       |
| 68 | A Novel Near-Real-Time Quality-Control Procedure for Radiometric Profiles Measured by Bio-Argo<br>Floats: Protocols and Performances. Journal of Atmospheric and Oceanic Technology, 2016, 33, 937-951.                                          | 0.5 | 57        |
| 69 | Bringing Biogeochemistry into the Argo Age. Eos, 2016, , .                                                                                                                                                                                       | 0.1 | 35        |
| 70 | A compilation of global bio-optical in situ data for ocean-colour satellite applications. Earth System<br>Science Data, 2016, 8, 235-252.                                                                                                        | 3.7 | 56        |
| 71 | Seasonal variability of nutrient concentrations in the <scp>M</scp> editerranean <scp>S</scp> ea:<br>Contribution of <scp>B</scp> ioâ€ <scp>A</scp> rgo floats. Journal of Geophysical Research: Oceans,<br>2015, 120, 8528-8550.                | 1.0 | 59        |
| 72 | Phytoplankton biomass cycles in the North Atlantic subpolar gyre: A similar mechanism for two<br>different blooms in the Labrador Sea. Geophysical Research Letters, 2015, 42, 5403-5410.                                                        | 1.5 | 37        |

| #  | Article                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | On the vertical distribution of the chlorophyll <i>a</i> concentration in<br>the Mediterranean Sea: a basin-scale and seasonal approach. Biogeosciences, 2015, 12, 5021-5039.                                                                                                                  | 1.3 | 90        |
| 74 | Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for globalâ€scale applications. Journal of Geophysical Research: Oceans, 2015, 120, 451-470. | 1.0 | 53        |
| 75 | Vertical distribution of chlorophyll <l>a</l> concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean. Earth System Science Data, 2015, 7, 261-273.                                                                    | 3.7 | 23        |
| 76 | Observing mixed layer depth, nitrate and chlorophyll concentrations in the northwestern<br>Mediterranean: A combined satellite and NO <sub>3</sub> profiling floats experiment. Geophysical<br>Research Letters, 2014, 41, 6443-6451.                                                          | 1.5 | 57        |
| 77 | Seasonal dynamics in colored dissolved organic matter in the Mediterranean Sea: Patterns and drivers. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 83, 93-101.                                                                                                               | 0.6 | 25        |
| 78 | Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in<br>oligotrophic environments: A Bioâ€Argo float investigation. Global Biogeochemical Cycles, 2014, 28,<br>856-876.                                                                            | 1.9 | 167       |
| 79 | Seasonal variations of bioâ€optical properties and their interrelationships observed by<br><scp>B</scp> ioâ€ <scp>A</scp> rgo floats in the subpolar <scp>N</scp> orth <scp>A</scp> tlantic.<br>Journal of Geophysical Research: Oceans, 2014, 119, 7372-7388.                                 | 1.0 | 29        |
| 80 | Decomposition of in situ particulate absorption spectra. Methods in Oceanography, 2013, 7, 110-124.                                                                                                                                                                                            | 1.5 | 82        |
| 81 | The characteristics of particulate absorption, scattering and attenuation coefficients in the surface ocean; Contribution of the Tara Oceans expedition. Methods in Oceanography, 2013, 7, 52-62.                                                                                              | 1.5 | 76        |
| 82 | Enhancing the comprehension of mixed layer depth control on the Mediterranean phytoplankton phenology. Journal of Geophysical Research: Oceans, 2013, 118, 3416-3430.                                                                                                                          | 1.0 | 65        |
| 83 | Instrumented elephant seals reveal the seasonality in chlorophyll and lightâ€mixing regime in the<br>ironâ€fertilized Southern Ocean. Geophysical Research Letters, 2013, 40, 6368-6372.                                                                                                       | 1.5 | 32        |
| 84 | The MAREDAT global database of high performance liquid chromatography marine pigment measurements. Earth System Science Data, 2013, 5, 109-123.                                                                                                                                                | 3.7 | 44        |
| 85 | Calibration procedures and first dataset of Southern Ocean chlorophyll<br><i>a</i> profiles collected by elephant seals equipped with a newly<br>developed CTD-fluorescence tags. Earth System Science Data, 2013, 5, 15-29.                                                                   | 3.7 | 51        |
| 86 | Combined processing and mutual interpretation of radiometry and fluorometry from autonomous<br>profiling Bioâ€Argo floats: 2. Colored dissolved organic matter absorption retrieval. Journal of<br>Geophysical Research, 2012, 117, .                                                          | 3.3 | 43        |
| 87 | Estimates of phytoplankton classâ€specific and total primary production in the Mediterranean Sea from satellite ocean color observations. Global Biogeochemical Cycles, 2012, 26, .                                                                                                            | 1.9 | 79        |
| 88 | Towards a merged satellite and in situ fluorescence ocean chlorophyll product. Biogeosciences, 2012,<br>9, 2111-2125.                                                                                                                                                                          | 1.3 | 37        |
| 89 | Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: A<br>case study with instrumented elephant seals in the Kerguelen region (Southern Ocean). Limnology and<br>Oceanography: Methods, 2012, 10, 483-495.                                              | 1.0 | 128       |
| 90 | Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll <i>a</i> retrieval. Journal of Geophysical Research, 2011, 116, .                                                                                           | 3.3 | 85        |

| #   | Article                                                                                                                                                                                                        | IF       | CITATIONS   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
| 91  | Deep silicon maxima in the stratified oligotrophic Mediterranean Sea. Biogeosciences, 2011, 8, 459-475.                                                                                                        | 1.3      | 76          |
| 92  | From the shape of the vertical profile of in vivo fluorescence to<br>Chlorophyll- <i>a</i> concentration. Biogeosciences, 2011, 8, 2391-2406.                                                                  | 1.3      | 58          |
| 93  | The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance. Biogeosciences, 2010, 7, 3139-3151.                                    | 1.3      | 128         |
| 94  | Phytoplankton classâ€specific primary production in the world's oceans: Seasonal and interannual variability from satellite observations. Global Biogeochemical Cycles, 2010, 24, .                            | 1.9      | 262         |
| 95  | Light absorption properties and absorption budget of Southeast Pacific waters. Journal of<br>Geophysical Research, 2010, 115, .                                                                                | 3.3      | 130         |
| 96  | Bio-Optical Profiling Floats as New Observational Tools for Biogeochemical and Ecosystem Studies:<br>Potential Synergies with Ocean Color Remote Sensing , 2010, , .                                           |          | 56          |
| 97  | Guidelines Towards an Integrated Ocean Observation System for Ecosystems and Biogeochemical Cycles. , 2010, , .                                                                                                |          | 26          |
| 98  | Towards an Integrated Observing System for Ocean Carbon and Biogeochemistry at a Time of Change. ,<br>2010, , .                                                                                                |          | 6           |
| 99  | Integrating the Ocean Observing System: Mobile Platforms. , 2010, , .                                                                                                                                          |          | 17          |
| 100 | Effects of phytoplankton community on production, size, and export of large aggregates: A<br>worldâ€ocean analysis. Limnology and Oceanography, 2009, 54, 1951-1963.                                           | 1.6      | 216         |
| 101 | A phytoplankton class-specific primary production model applied to the Kerguelen Islands region<br>(Southern Ocean). Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 541-560.               | 0.6      | 103         |
| 102 | Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans.<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106,<br>12803-12808. | 3.3      | 263         |
| 103 | Observing Biogeochemical Cycles at Global Scales with Profiling Floats and Gliders: Prospects for a Global Array. Oceanography, 2009, 22, 216-225.                                                             | 0.5      | 171         |
| 104 | The origin and global distribution of second order variability in satellite ocean color and its potential applications to algorithm development. Remote Sensing of Environment, 2008, 112, 4186-4203.          | 4.6      | 118         |
| 105 | Submesoscale physicalâ€biogeochemical coupling across the Ligurian current (northwestern) Tj ETQq1 1 0.784                                                                                                     | 314 rgBT | Overlock 10 |
| 106 | Relating phytoplankton photophysiological properties to community structure on large scales.<br>Limnology and Oceanography, 2008, 53, 614-630.                                                                 | 1.6      | 172         |
| 107 | Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data. Biogeosciences, 2008, 5, 353-369.                            | 1.3      | 300         |
| 108 | Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences, 2008, 5, 171-201.               | 1.3      | 333         |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Heterotrophic bacterial production in the eastern South Pacific: longitudinal trends and coupling with primary production. Biogeosciences, 2008, 5, 157-169.                                                                          | 1.3 | 36        |
| 110 | Calcite production by coccolithophores in the south east Pacific Ocean. Biogeosciences, 2008, 5, 1101-1117.                                                                                                                           | 1.3 | 76        |
| 111 | Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean. Biogeosciences, 2008, 5, 95-109.                                                                            | 1.3 | 165       |
| 112 | Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise). Biogeosciences, 2008, 5, 215-225.                                                                                                              | 1.3 | 118       |
| 113 | Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program. Biogeosciences, 2008, 5, 679-691.                                                          | 1.3 | 96        |
| 114 | Distribution of lipid biomarkers and carbon isotope fractionation in contrasting trophic environments of the South East Pacific. Biogeosciences, 2008, 5, 949-968.                                                                    | 1.3 | 28        |
| 115 | Gross community production and metabolic balance in the South Pacific Gyre, using a non intrusive bio-optical method. Biogeosciences, 2008, 5, 463-474.                                                                               | 1.3 | 51        |
| 116 | Distribution and fluxes of aggregates >100 μm in the upper kilometer of the South-Eastern<br>Pacific. Biogeosciences, 2008, 5, 1361-1372.                                                                                             | 1.3 | 22        |
| 117 | Optical properties of the "clearest―natural waters. Limnology and Oceanography, 2007, 52, 217-229.                                                                                                                                    | 1.6 | 328       |
| 118 | High Abundances of Aerobic Anoxygenic Photosynthetic Bacteria in the South Pacific Ocean. Applied and Environmental Microbiology, 2007, 73, 4198-4205.                                                                                | 1.4 | 116       |
| 119 | Partitioning total spectral absorption in phytoplankton and colored detrital material contributions.<br>Limnology and Oceanography: Methods, 2007, 5, 384-395.                                                                        | 1.0 | 27        |
| 120 | Retrieval of pigment concentrations and size structure of algal populations from their absorption spectra using multilayered perceptrons. Applied Optics, 2007, 46, 1251.                                                             | 2.1 | 60        |
| 121 | Relationship between photosynthetic parameters and different proxies of phytoplankton biomass in the subtropical ocean. Biogeosciences, 2007, 4, 853-868.                                                                             | 1.3 | 83        |
| 122 | Contribution of picoplankton to the total particulate organic carbon concentration in the eastern<br>South Pacific. Biogeosciences, 2007, 4, 837-852.                                                                                 | 1.3 | 123       |
| 123 | Natural variability of bio-optical properties in Case 1 waters: attenuation and reflectance within the visible and near-UV spectral domains, as observed in South Pacific and Mediterranean waters. Biogeosciences, 2007, 4, 913-925. | 1.3 | 74        |
| 124 | Two High-Nutrient Low-Chlorophyll phytoplankton assemblages: the tropical central Pacific and the offshore Perú-Chile Current. Biogeosciences, 2007, 4, 1101-1113.                                                                    | 1.3 | 34        |
| 125 | Growth and specific P-uptake rates of bacterial and phytoplanktonic communities in the Southeast<br>Pacific (BIOSOPE cruise). Biogeosciences, 2007, 4, 941-956.                                                                       | 1.3 | 25        |
| 126 | Optical backscattering properties of the "clearest" natural waters.<br>Biogeosciences, 2007, 4, 1041-1058.                                                                                                                            | 1.3 | 107       |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | High vertical and low horizontal diversity of Prochlorococcus ecotypes in the Mediterranean Sea in summer. FEMS Microbiology Ecology, 2007, 60, 189-206.                                                                 | 1.3 | 67        |
| 128 | Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. Journal of Geophysical Research, 2006, 111, .                                                              | 3.3 | 670       |
| 129 | Diel variations in the photosynthetic parameters of Prochlorococcus strain PCC 9511: Combined effects of light and cell cycle. Limnology and Oceanography, 2005, 50, 850-863.                                            | 1.6 | 67        |
| 130 | Bio-optical and biogeochemical properties of different trophic regimes in oceanic waters. Limnology and Oceanography, 2005, 50, 1795-1809.                                                                               | 1.6 | 73        |
| 131 | Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models.<br>Global Change Biology, 2005, 11, 051013014052005-???.                                                                  | 4.2 | 353       |
| 132 | Toward a taxon-specific parameterization of bio-optical models of primary production: A case study in the North Atlantic. Journal of Geophysical Research, 2005, 110, .                                                  | 3.3 | 78        |
| 133 | Availability of iron and major nutrients for phytoplankton in the northeast Atlantic Ocean.<br>Limnology and Oceanography, 2004, 49, 2095-2104.                                                                          | 1.6 | 79        |
| 134 | Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend.<br>Global Change Biology, 2004, 10, 1973-1980.                                                                         | 4.2 | 332       |
| 135 | An intercomparison of HPLC phytoplankton pigment methods using in situ samples: application to remote sensing and database activities. Marine Chemistry, 2004, 85, 41-61.                                                | 0.9 | 107       |
| 136 | Siliceous phytoplankton production and export related to trans-frontal dynamics of the<br>Almeria-Oran frontal system (western Mediterranean Sea) during winter. Journal of Geophysical<br>Research, 2004, 109, .        | 3.3 | 9         |
| 137 | Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. Journal of Geophysical Research, 2004, 109, .                                                 | 3.3 | 429       |
| 138 | Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research, 2003, 108, .                        | 3.3 | 758       |
| 139 | OCEAN SCIENCE: The Many Shades of Ocean Blue. Science, 2003, 302, 1514-1515.                                                                                                                                             | 6.0 | 105       |
| 140 | The genus <i>Asterodinium</i> (Dinophyceae) as a possible biological indicator of warming in the<br>western Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom, 2003,<br>83, 173-174. | 0.4 | 23        |
| 141 | Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom<br><i>Thalassiosira pseudonana</i> . Limnology and Oceanography, 2002, 47, 392-403.                                | 1.6 | 99        |
| 142 | Diel variations in <i>Prochlorococcus</i> optical properties. Limnology and Oceanography, 2002, 47, 1637-1647.                                                                                                           | 1.6 | 75        |
| 143 | Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium<br><i>Synechococcus</i> ?. Limnology and Oceanography, 2002, 47, 1562-1567.                                               | 1.6 | 203       |
| 144 | Is desert dust making oligotrophic waters greener?. Geophysical Research Letters, 2002, 29, 107-1-107-4.                                                                                                                 | 1.5 | 139       |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Microzooplankton diversity: relationships of tintinnid ciliates with resources, competitors and predators from the Atlantic Coast of Morocco to the Eastern Mediterranean. Deep-Sea Research Part<br>I: Oceanographic Research Papers, 2002, 49, 1217-1232.       | 0.6 | 120       |
| 146 | Photoacclimatization in the zooxanthellae of Pocillopora verrucosa and comparison with a pelagic<br>algal community. Oceanologica Acta: European Journal of Oceanology - Revue Europeene De<br>Oceanologie, 2002, 25, 125-134.                                    | 0.7 | 3         |
| 147 | Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern<br>Mediterranean Sea during winter. Journal of Geophysical Research, 2001, 106, 19939-19956.                                                                       | 3.3 | 434       |
| 148 | Nitrogen deprivation strongly affects Photosystem II but not phycoerythrin level in the<br>divinyl-chlorophyll b -containing cyanobacterium Prochlorococcus marinus. Biochimica Et<br>Biophysica Acta - Bioenergetics, 2001, 1503, 341-349.                       | 0.5 | 37        |
| 149 | Evaluation of the utility of chemotaxonomic pigments as a surrogate for particulate DMSP. Limnology and Oceanography, 2001, 46, 989-995.                                                                                                                          | 1.6 | 27        |
| 150 | An axenic cyclostat of Prochlorococcus PCC 9511 with a simulator of natural light regimes. Journal of Applied Phycology, 2001, 13, 135-142.                                                                                                                       | 1.5 | 23        |
| 151 | Continuous monitoring of surface optical properties across a geostrophic front: Biogeochemical inferences. Limnology and Oceanography, 2000, 45, 309-321.                                                                                                         | 1.6 | 42        |
| 152 | Abundance and diversity of prymnesiophytes in the picoplankton coî¼munity from the equatorial Pacific Ocean inferred from 18S rDNA sequences. Limnology and Oceanography, 2000, 45, 98-109.                                                                       | 1.6 | 208       |
| 153 | Responses of growth rate, pigment composition and optical properties of Cryptomonas sp. to light and nitrogen stresses. Marine Ecology - Progress Series, 2000, 201, 107-120.                                                                                     | 0.9 | 43        |
| 154 | BOLIDOMONAS: A NEW GENUS WITH TWO SPECIES BELONGING TO A NEW ALGAL CLASS, THE BOLIDOPHYCEAE (HETEROKONTA). Journal of Phycology, 1999, 35, 368-381.                                                                                                               | 1.0 | 225       |
| 155 | Planktonic ciliates in the Mediterranean Sea: longitudinal trends. Deep-Sea Research Part I:<br>Oceanographic Research Papers, 1999, 46, 2025-2039.                                                                                                               | 0.6 | 87        |
| 156 | Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and biogeochemical implications. Journal of Geophysical Research, 1999, 104, 3401-3422.                                                               | 3.3 | 125       |
| 157 | Correction to "Variations of light absorption by suspended particles with<br>chlorophyllaconcentration in oceanic (case 1) waters: Analysis and implications for bio-optical<br>models―by A. Bricaud et al Journal of Geophysical Research, 1999, 104, 8025-8025. | 3.3 | 3         |
| 158 | Diversity and Abundance of Bolidophyceae (Heterokonta) in Two Oceanic Regions. Applied and<br>Environmental Microbiology, 1999, 65, 4528-4536.                                                                                                                    | 1.4 | 72        |
| 159 | Pigment dynamics associated with the grazing of a ciliate and a flagellate feeding on a cyanobacterium. Oceanologica Acta: European Journal of Oceanology - Revue Europeene De Oceanologie, 1998, 21, 581-588.                                                    | 0.7 | 4         |
| 160 | Variations of light absorption by suspended particles with chlorophyllaconcentration in oceanic<br>(case 1) waters: Analysis and implications for bio-optical models. Journal of Geophysical Research,<br>1998, 103, 31033-31044.                                 | 3.3 | 555       |
| 161 | <title>Spatial variations of photosynthetic parameters in equatorial Pacific: forcing by vertical mixing and light penetration</title> . , 1997, 2963, 880.                                                                                                       |     | 1         |
| 162 | <title>Spatial variability in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetic pigments in the equatorial Pacific</title> ., 1997, 2963, 179.                                                                                 |     | 0         |

| #   | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial Pacific. Journal of Geophysical Research, 1997, 102, 12413-12423.                                                 | 3.3  | 88        |
| 164 | Sources of variability in the column photosynthetic cross section for Antarctic coastal waters.<br>Journal of Geophysical Research, 1997, 102, 25047-25060.                                                                                                        | 3.3  | 32        |
| 165 | <title>Variations in the water column photosynthetic cross section for Antarctic coastal waters</title> . , 1997, , .                                                                                                                                              |      | 1         |
| 166 | Determination of chlorophylls and carotenoids of marine phytoplankton: separation of chlorophyll<br>a from divinylchlorophyll a and zeaxanthin from lutein. Journal of Plankton Research, 1996, 18,<br>2377-2382.                                                  | 0.8  | 187       |
| 167 | Spectral absorption and fluorescence excitation properties of phytoplanktonic populations at a mesotrophic and an oligotrophic site in the tropical North Atlantic (EUMELI program). Deep-Sea Research Part I: Oceanographic Research Papers, 1996, 43, 1215-1240. | 0.6  | 33        |
| 168 | Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in<br>eutrophic, mesotrophic and oligotrophic marine systems. Deep-Sea Research Part I: Oceanographic<br>Research Papers, 1996, 43, 1241-1272.                       | 0.6  | 226       |
| 169 | Carbon biomass, and gross growth rates as estimated from 14C pigment labelling, during photoacclimation in Prochlorococcus CCMP 1378. Marine Ecology - Progress Series, 1996, 145, 209-221.                                                                        | 0.9  | 52        |
| 170 | Specific phytoplankton biomasses and their relation to primary production in the tropical North<br>Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42, 1475-1493.                                                                         | 0.6  | 108       |
| 171 | Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization. Journal of Geophysical Research, 1995, 100, 13321.                                                                                        | 3.3  | 902       |
| 172 | A new marine picoeucaryote: Ostreococcus tauri gen. et sp. nov. (Chlorophyta, Prasinophyceae).<br>Phycologia, 1995, 34, 285-292.                                                                                                                                   | 0.6  | 156       |
| 173 | Specific phytoplankton signatures and their relationship to hydrographic conditions in the coastal northwestern Mediterranean Sea. Marine Ecology - Progress Series, 1995, 124, 247-258.                                                                           | 0.9  | 114       |
| 174 | Smallest eukaryotic organism. Nature, 1994, 370, 255-255.                                                                                                                                                                                                          | 13.7 | 303       |
| 175 | Gradients of phytoplankton abundance, composition and photosynthetic pigments across the<br>Almeria-Oran front (SW Mediterranean Sea). Journal of Marine Systems, 1994, 5, 223-233.                                                                                | 0.9  | 38        |
| 176 | Phytoplankton photoadaptation related to some frontal physical processes. Journal of Marine Systems, 1994, 5, 251-265.                                                                                                                                             | 0.9  | 54        |
| 177 | The trophic status of various oceanic provinces as revealed by phytoplankton pigment signatures.<br>Limnology and Oceanography, 1994, 39, 1206-1210.                                                                                                               | 1.6  | 195       |
| 178 | Phytoplankton dynamics associated with a geostrophic front: Ecological and biogeochemical implications. Journal of Marine Research, 1994, 52, 711-742.                                                                                                             | 0.3  | 135       |
| 179 | Size distribution of dimethylsulfoniopropionate (DMSP) in areas of the tropical northeastern<br>Atlantic Ocean and the Mediterranean Sea. Marine Chemistry, 1993, 44, 55-71.                                                                                       | 0.9  | 58        |
| 180 | <i>Prochlorococcus</i> and <i>Synechococcus</i> : A comparative study of their optical properties in relation to their size and pigmentation. Journal of Marine Research, 1993, 51, 617-649.                                                                       | 0.3  | 276       |

| #   | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Relationship between the qualitative nature of particles and copepod faeces in the Irish Sea. Marine Chemistry, 1992, 40, 231-248.                                                                                                                                  | 0.9 | 17        |
| 182 | Photosynthetic pigments as biomarkers oof phytoplankton populations and processes involved in the<br>transformation of particulate organic matter at the Biotrans site (47°N, 20°W). Deep-sea Research Part<br>A, Oceanographic Research Papers, 1991, 38, 347-355. | 1.6 | 45        |
| 183 | A biochemical investigation of a Phaeocystis sp. bloom in the Irish Sea. Journal of the Marine<br>Biological Association of the United Kingdom, 1990, 70, 197-207.                                                                                                  | 0.4 | 54        |
| 184 | Effect of variable nutrient supply on fatty acid composition of phytoplankton grown in an enclosed experimental ecosystem. Marine Ecology - Progress Series, 1990, 60, 123-140.                                                                                     | 0.9 | 38        |
| 185 | Intraspecific differences in the biochemical composition of a diatom during a spring bloom in<br>Villefranche-sur-Mer Bay, Mediterranean Sea. Journal of Experimental Marine Biology and Ecology,<br>1989, 129, 17-32.                                              | 0.7 | 39        |
| 186 | Adaptation of biochemical composition and cell size to irradiance in two microalgae: possible ecological implications. Marine Ecology - Progress Series, 1987, 40, 167-174.                                                                                         | 0.9 | 44        |
| 187 | A turbidostat driven and controlled by microcomputer. Aquaculture, 1985, 48, 91-95.                                                                                                                                                                                 | 1.7 | 5         |
| 188 | ESTIMATION OF OCEANIC PARTICULATE ORGANIC CARBON WITH MACHINE LEARNING. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-2-2020, 949-956.                                                                                  | 0.0 | 12        |