Herve Claustre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/594865/publications.pdf

Version: 2024-02-01

188 papers 18,423 citations

69 h-index 125 g-index

239 all docs 239 docs citations

times ranked

239

10645 citing authors

#	Article	IF	Citations
1	Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization. Journal of Geophysical Research, 1995, 100, 13321.	3.3	902
2	Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research, 2003, 108, .	3.3	758
3	Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. Journal of Geophysical Research, 2006, 111 , .	3.3	670
4	Variations of light absorption by suspended particles with chlorophyllaconcentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. Journal of Geophysical Research, 1998, 103, 31033-31044.	3.3	555
5	Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature, 2019, 568, 327-335.	27.8	455
6	Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. Journal of Geophysical Research, 2001, 106, 19939-19956.	3.3	434
7	Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. Journal of Geophysical Research, 2004, 109, .	3.3	429
8	Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biology, 2005, 11, 051013014052005-???.	9.5	353
9	Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences, 2008, 5, 171-201.	3.3	333
10	Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Global Change Biology, 2004, 10, 1973-1980.	9.5	332
11	Optical properties of the "clearest―natural waters. Limnology and Oceanography, 2007, 52, 217-229.	3.1	328
12	Smallest eukaryotic organism. Nature, 1994, 370, 255-255.	27.8	303
13	Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data. Biogeosciences, 2008, 5, 353-369.	3.3	300
14	<i>Prochlorococcus</i> and <i>Synechococcus</i> : A comparative study of their optical properties in relation to their size and pigmentation. Journal of Marine Research, 1993, 51, 617-649.	0.3	276
15	Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12803-12808.	7.1	263
16	Phytoplankton classâ€specific primary production in the world's oceans: Seasonal and interannual variability from satellite observations. Global Biogeochemical Cycles, 2010, 24, .	4.9	262
17	On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array. Frontiers in Marine Science, 2019, 6, .	2.5	235
18	Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems. Deep-Sea Research Part I: Oceanographic Research Papers, 1996, 43, 1241-1272.	1.4	226

#	Article	IF	Citations
19	BOLIDOMONAS: A NEW GENUS WITH TWO SPECIES BELONGING TO A NEW ALGAL CLASS, THE BOLIDOPHYCEAE (HETEROKONTA). Journal of Phycology, 1999, 35, 368-381.	2.3	225
20	Effects of phytoplankton community on production, size, and export of large aggregates: A worldâ€ocean analysis. Limnology and Oceanography, 2009, 54, 1951-1963.	3.1	216
21	Abundance and diversity of prymnesiophytes in the picoplankton $col^{1}/4$ munity from the equatorial Pacific Ocean inferred from 18S rDNA sequences. Limnology and Oceanography, 2000, 45, 98-109.	3.1	208
22	Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium <i>Synechococcus</i> ?. Limnology and Oceanography, 2002, 47, 1562-1567.	3.1	203
23	The trophic status of various oceanic provinces as revealed by phytoplankton pigment signatures. Limnology and Oceanography, 1994, 39, 1206-1210.	3.1	195
24	Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors. Limnology and Oceanography: Methods, 2017, 15, 572-585.	2.0	191
25	Determination of chlorophylls and carotenoids of marine phytoplankton: separation of chlorophyll a from divinylchlorophyll a and zeaxanthin from lutein. Journal of Plankton Research, 1996, 18, 2377-2382.	1.8	187
26	Relating phytoplankton photophysiological properties to community structure on large scales. Limnology and Oceanography, 2008, 53, 614-630.	3.1	172
27	Observing Biogeochemical Cycles at Global Scales with Profiling Floats and Gliders: Prospects for a Global Array. Oceanography, 2009, 22, 216-225.	1.0	171
28	Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: A Bioâ€Argo float investigation. Global Biogeochemical Cycles, 2014, 28, 856-876.	4.9	167
29	Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean. Biogeosciences, 2008, 5, 95-109.	3.3	165
30	A new marine picoeucaryote: Ostreococcus tauri gen. et sp. nov. (Chlorophyta, Prasinophyceae). Phycologia, 1995, 34, 285-292.	1.4	156
31	Observing the Global Ocean with Biogeochemical-Argo. Annual Review of Marine Science, 2020, 12, 23-48.	11.6	155
32	Major role of particle fragmentation in regulating biological sequestration of CO ₂ by the oceans. Science, 2020, 367, 791-793.	12.6	140
33	Is desert dust making oligotrophic waters greener?. Geophysical Research Letters, 2002, 29, 107-1-107-4.	4.0	139
34	Phytoplankton dynamics associated with a geostrophic front: Ecological and biogeochemical implications. Journal of Marine Research, 1994, 52, 711-742.	0.3	135
35	From Observation to Information and Users: The Copernicus Marine Service Perspective. Frontiers in Marine Science, 2019, 6, .	2.5	135
36	Light absorption properties and absorption budget of Southeast Pacific waters. Journal of Geophysical Research, 2010, 115, .	3.3	130

3

#	Article	IF	CITATIONS
37	The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance. Biogeosciences, 2010, 7, 3139-3151.	3.3	128
38	Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: A case study with instrumented elephant seals in the Kerguelen region (Southern Ocean). Limnology and Oceanography: Methods, 2012, 10, 483-495.	2.0	128
39	Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and biogeochemical implications. Journal of Geophysical Research, 1999, 104, 3401-3422.	3.3	125
40	Contribution of picoplankton to the total particulate organic carbon concentration in the eastern South Pacific. Biogeosciences, 2007, 4, 837-852.	3.3	123
41	Microzooplankton diversity: relationships of tintinnid ciliates with resources, competitors and predators from the Atlantic Coast of Morocco to the Eastern Mediterranean. Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49, 1217-1232.	1.4	120
42	The origin and global distribution of second order variability in satellite ocean color and its potential applications to algorithm development. Remote Sensing of Environment, 2008, 112, 4186-4203.	11.0	118
43	Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise). Biogeosciences, 2008, 5, 215-225.	3.3	118
44	Argo Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats. Frontiers in Marine Science, 2020, 7, .	2.5	117
45	High Abundances of Aerobic Anoxygenic Photosynthetic Bacteria in the South Pacific Ocean. Applied and Environmental Microbiology, 2007, 73, 4198-4205.	3.1	116
46	Monitoring ocean biogeochemistry with autonomous platforms. Nature Reviews Earth & Environment, 2020, $1,315-326$.	29.7	114
47	Specific phytoplankton signatures and their relationship to hydrographic conditions in the coastal northwestern Mediterranean Sea. Marine Ecology - Progress Series, 1995, 124, 247-258.	1.9	114
48	Specific phytoplankton biomasses and their relation to primary production in the tropical North Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42, 1475-1493.	1.4	108
49	An intercomparison of HPLC phytoplankton pigment methods using in situ samples: application to remote sensing and database activities. Marine Chemistry, 2004, 85, 41-61.	2.3	107
50	Optical backscattering properties of the & Doptical backscattering properties of the Backscattering properties of the & Doptical backscattering properties of the Backscattering	3.3	107
51	Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nature Geoscience, 2016, 9, 820-823.	12.9	106
52	OCEAN SCIENCE: The Many Shades of Ocean Blue. Science, 2003, 302, 1514-1515.	12.6	105
53	A phytoplankton class-specific primary production model applied to the Kerguelen Islands region (Southern Ocean). Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 541-560.	1.4	103

Submesoscale physical $\hat{a} \in b$ iogeochemical coupling across the Ligurian current (northwestern) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf_{101} 50 62 To 3.1

#	Article	IF	CITATIONS
55	An Alternative to Static Climatologies: Robust Estimation of Open Ocean CO2 Variables and Nutrient Concentrations From T, S, and O2 Data Using Bayesian Neural Networks. Frontiers in Marine Science, 2018, 5, .	2.5	100
56	Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom <i>Thalassiosira pseudonana</i> . Limnology and Oceanography, 2002, 47, 392-403.	3.1	99
57	Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program. Biogeosciences, 2008, 5, 679-691.	3.3	96
58	On the vertical distribution of the chlorophyll & amp;lt;i>a concentration in the Mediterranean Sea: a basin-scale and seasonal approach. Biogeosciences, 2015, 12, 5021-5039.	3.3	90
59	Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial Pacific. Journal of Geophysical Research, 1997, 102, 12413-12423.	3.3	88
60	Planktonic ciliates in the Mediterranean Sea: longitudinal trends. Deep-Sea Research Part I: Oceanographic Research Papers, 1999, 46, 2025-2039.	1.4	87
61	A BGC-Argo Guide: Planning, Deployment, Data Handling and Usage. Frontiers in Marine Science, 2019, 6,	2.5	86
62	Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll <i>a</i> retrieval. Journal of Geophysical Research, 2011, 116, .	3.3	85
63	Relationship between photosynthetic parameters and different proxies of phytoplankton biomass in the subtropical ocean. Biogeosciences, 2007, 4, 853-868.	3.3	83
64	Decomposition of in situ particulate absorption spectra. Methods in Oceanography, 2013, 7, 110-124.	1.6	82
65	Availability of iron and major nutrients for phytoplankton in the northeast Atlantic Ocean. Limnology and Oceanography, 2004, 49, 2095-2104.	3.1	79
66	Estimates of phytoplankton classâ€specific and total primary production in the Mediterranean Sea from satellite ocean color observations. Global Biogeochemical Cycles, 2012, 26, .	4.9	79
67	Delineating environmental control of phytoplankton biomass and phenology in the Southern Ocean. Geophysical Research Letters, 2017, 44, 5016-5024.	4.0	79
68	Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nature Communications, 2019, 10, 2451.	12.8	79
69	Toward a taxon-specific parameterization of bio-optical models of primary production: A case study in the North Atlantic. Journal of Geophysical Research, 2005, 110 , .	3.3	78
70	Calcite production by coccolithophores in the south east Pacific Ocean. Biogeosciences, 2008, 5, 1101-1117.	3.3	76
71	Deep silicon maxima in the stratified oligotrophic Mediterranean Sea. Biogeosciences, 2011, 8, 459-475.	3.3	76
72	The characteristics of particulate absorption, scattering and attenuation coefficients in the surface ocean; Contribution of the Tara Oceans expedition. Methods in Oceanography, 2013, 7, 52-62.	1.6	76

#	Article	IF	CITATIONS
73	Communityâ€Level Responses to Iron Availability in Open Ocean Plankton Ecosystems. Global Biogeochemical Cycles, 2019, 33, 391-419.	4.9	76
74	Diel variations in <i>Prochlorococcus</i> optical properties. Limnology and Oceanography, 2002, 47, 1637-1647.	3.1	75
75	Natural variability of bio-optical properties in Case 1 waters: attenuation and reflectance within the visible and near-UV spectral domains, as observed in South Pacific and Mediterranean waters. Biogeosciences, 2007, 4, 913-925.	3.3	74
76	Bio-optical and biogeochemical properties of different trophic regimes in oceanic waters. Limnology and Oceanography, 2005, 50, 1795-1809.	3.1	73
77	The oceans' twilight zone must be studied now, before it is too late. Nature, 2020, 580, 26-28.	27.8	73
78	Diversity and Abundance of Bolidophyceae (Heterokonta) in Two Oceanic Regions. Applied and Environmental Microbiology, 1999, 65, 4528-4536.	3.1	72
79	Estimates of Water-Column Nutrient Concentrations and Carbonate System Parameters in the Global Ocean: A Novel Approach Based on Neural Networks. Frontiers in Marine Science, 2017, 4, .	2.5	71
80	Deep Chlorophyll Maxima in the Global Ocean: Occurrences, Drivers and Characteristics. Global Biogeochemical Cycles, 2021, 35, e2020GB006759.	4.9	69
81	Diel variations in the photosynthetic parameters of Prochlorococcus strain PCC 9511: Combined effects of light and cell cycle. Limnology and Oceanography, 2005, 50, 850-863.	3.1	67
82	High vertical and low horizontal diversity of Prochlorococcus ecotypes in the Mediterranean Sea in summer. FEMS Microbiology Ecology, 2007, 60, 189-206.	2.7	67
83	Enhancing the comprehension of mixed layer depth control on the Mediterranean phytoplankton phenology. Journal of Geophysical Research: Oceans, 2013, 118, 3416-3430.	2.6	65
84	Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom. Nature Communications, 2018, 9, 190.	12.8	65
85	Interannual variability of the Mediterranean trophic regimes from ocean color satellites. Biogeosciences, 2016, 13, 1901-1917.	3.3	63
86	Retrieval of pigment concentrations and size structure of algal populations from their absorption spectra using multilayered perceptrons. Applied Optics, 2007, 46, 1251.	2.1	60
87	Seasonal variability of nutrient concentrations in the <scp>M</scp> editerranean <scp>S</scp> ea: Contribution of <scp>B</scp> ioâ€ <scp>A</scp> rgo floats. Journal of Geophysical Research: Oceans, 2015, 120, 8528-8550.	2.6	59
88	Size distribution of dimethylsulfoniopropionate (DMSP) in areas of the tropical northeastern Atlantic Ocean and the Mediterranean Sea. Marine Chemistry, 1993, 44, 55-71.	2.3	58
89	From the shape of the vertical profile of in vivo fluorescence to Chlorophyll- <l>a concentration. Biogeosciences, 2011, 8, 2391-2406.</l>	3.3	58
90	Observing mixed layer depth, nitrate and chlorophyll concentrations in the northwestern Mediterranean: A combined satellite and NO ₃ profiling floats experiment. Geophysical Research Letters, 2014, 41, 6443-6451.	4.0	57

#	Article	IF	CITATIONS
91	A Novel Near-Real-Time Quality-Control Procedure for Radiometric Profiles Measured by Bio-Argo Floats: Protocols and Performances. Journal of Atmospheric and Oceanic Technology, 2016, 33, 937-951.	1.3	57
92	Physical and Biogeochemical Controls of the Phytoplankton Blooms in North Western Mediterranean Sea: A Multiplatform Approach Over a Complete Annual Cycle (2012–2013 DEWEX Experiment). Journal of Geophysical Research: Oceans, 2017, 122, 9999-10019.	2.6	56
93	A compilation of global bio-optical in situ data for ocean-colour satellite applications. Earth System Science Data, 2016, 8, 235-252.	9.9	56
94	Bio-Optical Profiling Floats as New Observational Tools for Biogeochemical and Ecosystem Studies: Potential Synergies with Ocean Color Remote Sensing , 2010, , .		56
95	Assessing the Variability in the Relationship Between the Particulate Backscattering Coefficient and the Chlorophyll <i>a</i> Concentration From a Global Biogeochemicalâ€Argo Database. Journal of Geophysical Research: Oceans, 2018, 123, 1229-1250.	2.6	55
96	A biochemical investigation of a Phaeocystis sp. bloom in the Irish Sea. Journal of the Marine Biological Association of the United Kingdom, 1990, 70, 197-207.	0.8	54
97	Phytoplankton photoadaptation related to some frontal physical processes. Journal of Marine Systems, 1994, 5, 251-265.	2.1	54
98	Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for globalâ€scale applications. Journal of Geophysical Research: Oceans, 2015, 120, 451-470.	2.6	53
99	Unexpected winter phytoplankton blooms in the North Atlantic subpolar gyre. Nature Geoscience, 2017, 10, 836-839.	12.9	52
100	Carbon biomass, and gross growth rates as estimated from 14C pigment labelling, during photoacclimation in Prochlorococcus CCMP 1378. Marine Ecology - Progress Series, 1996, 145, 209-221.	1.9	52
101	Gross community production and metabolic balance in the South Pacific Gyre, using a non intrusive bio-optical method. Biogeosciences, 2008, 5, 463-474.	3.3	51
102	Calibration procedures and first dataset of Southern Ocean chlorophyll & amp; t;i>a profiles collected by elephant seals equipped with a newly developed CTD-fluorescence tags. Earth System Science Data, 2013, 5, 15-29.	9.9	51
103	A neural networkâ€based method for merging ocean color and Argo data to extend surface bioâ€optical properties to depth: Retrieval of the particulate backscattering coefficient. Journal of Geophysical Research: Oceans, 2016, 121, 2552-2571.	2.6	50
104	Improved correction for non-photochemical quenching of in situ chlorophyll fluorescence based on a synchronous irradiance profile. Optics Express, 2018, 26, 24734.	3.4	50
105	Photosynthetic pigments as biomarkers oof phytoplankton populations and processes involved in the transformation of particulate organic matter at the Biotrans site (47°N, 20°W). Deep-sea Research Part A, Oceanographic Research Papers, 1991, 38, 347-355.	1.5	45
106	Assessing Pigment-Based Phytoplankton Community Distributions in the Red Sea. Frontiers in Marine Science, 2017, 4, .	2.5	45
107	Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean. Elementa, 2020, 8, .	3.2	45
108	Bioâ€optical anomalies in the world's oceans: An investigation on the diffuse attenuation coefficients for downward irradiance derived from <scp>B</scp> iogeochemical <scp>A</scp> rgo float measurements. Journal of Geophysical Research: Oceans, 2017, 122, 3543-3564.	2.6	44

#	Article	IF	Citations
109	Correction of profiles of inâ€situ chlorophyll fluorometry for the contribution of fluorescence originating from nonâ€algal matter. Limnology and Oceanography: Methods, 2017, 15, 80-93.	2.0	44
110	The Intraseasonal Dynamics of the Mixed Layer Pump in the Subpolar North Atlantic Ocean: A Biogeochemicalâ€Argo Float Approach. Global Biogeochemical Cycles, 2019, 33, 266-281.	4.9	44
111	Adaptation of biochemical composition and cell size to irradiance in two microalgae: possible ecological implications. Marine Ecology - Progress Series, 1987, 40, 167-174.	1.9	44
112	The MAREDAT global database of high performance liquid chromatography marine pigment measurements. Earth System Science Data, 2013, 5, 109-123.	9.9	44
113	Combined processing and mutual interpretation of radiometry and fluorometry from autonomous profiling Bioâ€Argo floats: 2. Colored dissolved organic matter absorption retrieval. Journal of Geophysical Research, 2012, 117, .	3.3	43
114	Bio-optical characterization of subsurface chlorophyll maxima in the Mediterranean Sea from a Biogeochemical-Argo float database. Biogeosciences, 2019, 16, 1321-1342.	3.3	43
115	Responses of growth rate, pigment composition and optical properties of Cryptomonas sp. to light and nitrogen stresses. Marine Ecology - Progress Series, 2000, 201, 107-120.	1.9	43
116	A compilation of global bio-optical in situ data for ocean-colour satellite applications – version two. Earth System Science Data, 2019, 11, 1037-1068.	9.9	43
117	Continuous monitoring of surface optical properties across a geostrophic front: Biogeochemical inferences. Limnology and Oceanography, 2000, 45, 309-321.	3.1	42
118	Plankton Assemblage Estimated with BGCâ€Argo Floats in the Southern Ocean: Implications for Seasonal Successions and Particle Export. Journal of Geophysical Research: Oceans, 2017, 122, 8278-8292.	2.6	42
119	Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications. Earth System Science Data, 2017, 9, 861-880.	9.9	42
120	<scp>The Underwater Vision Profiler 6: an imaging sensor of particle size spectra and plankton, for autonomous and cabled platforms /scp>. Limnology and Oceanography: Methods, 2022, 20, 115-129.</scp>	2.0	42
121	Global Variability of Optical Backscattering by Nonâ€elgal particles From a Biogeochemicalâ€Argo Data Set. Geophysical Research Letters, 2019, 46, 9767-9776.	4.0	41
122	Influence of the Phytoplankton Community Structure on the Spring and Annual Primary Production in the Northwestern Mediterranean Sea. Journal of Geophysical Research: Oceans, 2017, 122, 9918-9936.	2.6	40
123	Intraspecific differences in the biochemical composition of a diatom during a spring bloom in Villefranche-sur-Mer Bay, Mediterranean Sea. Journal of Experimental Marine Biology and Ecology, 1989, 129, 17-32.	1.5	39
124	Gradients of phytoplankton abundance, composition and photosynthetic pigments across the Almeria-Oran front (SW Mediterranean Sea). Journal of Marine Systems, 1994, 5, 223-233.	2.1	38
125	Effect of variable nutrient supply on fatty acid composition of phytoplankton grown in an enclosed experimental ecosystem. Marine Ecology - Progress Series, 1990, 60, 123-140.	1.9	38
126	Nitrogen deprivation strongly affects Photosystem II but not phycoerythrin level in the divinyl-chlorophyll b -containing cyanobacterium Prochlorococcus marinus. Biochimica Et Biophysica Acta - Bioenergetics, 2001, 1503, 341-349.	1.0	37

#	Article	IF	Citations
127	Towards a merged satellite and in situ fluorescence ocean chlorophyll product. Biogeosciences, 2012, 9, 2111-2125.	3.3	37
128	Phytoplankton biomass cycles in the North Atlantic subpolar gyre: A similar mechanism for two different blooms in the Labrador Sea. Geophysical Research Letters, 2015, 42, 5403-5410.	4.0	37
129	Heterotrophic bacterial production in the eastern South Pacific: longitudinal trends and coupling with primary production. Biogeosciences, 2008, 5, 157-169.	3.3	36
130	Bringing Biogeochemistry into the Argo Age. Eos, 2016, , .	0.1	35
131	Two High-Nutrient Low-Chlorophyll phytoplankton assemblages: the tropical central Pacific and the offshore Perú-Chile Current. Biogeosciences, 2007, 4, 1101-1113.	3.3	34
132	Spectral absorption and fluorescence excitation properties of phytoplanktonic populations at a mesotrophic and an oligotrophic site in the tropical North Atlantic (EUMELI program). Deep-Sea Research Part I: Oceanographic Research Papers, 1996, 43, 1215-1240.	1.4	33
133	Arctic mid-winter phytoplankton growth revealed by autonomous profilers. Science Advances, 2020, 6, .	10.3	33
134	Sources of variability in the column photosynthetic cross section for Antarctic coastal waters. Journal of Geophysical Research, 1997, 102, 25047-25060.	3.3	32
135	Instrumented elephant seals reveal the seasonality in chlorophyll and lightâ€mixing regime in the ironâ€fertilized Southern Ocean. Geophysical Research Letters, 2013, 40, 6368-6372.	4.0	32
136	Green Edge ice camp campaigns: understanding the processes controlling the under-ice Arctic phytoplankton spring bloom. Earth System Science Data, 2020, 12, 151-176.	9.9	32
137	Seasonal variations of bioâ€optical properties and their interrelationships observed by <scp>B</scp> ioâ€ <scp>A</scp> tlantic. Journal of Geophysical Research: Oceans, 2014, 119, 7372-7388.	2.6	29
138	ProVal: A New Autonomous Profiling Float for High Quality Radiometric Measurements. Frontiers in Marine Science, 2018, 5, .	2.5	29
139	Distribution of lipid biomarkers and carbon isotope fractionation in contrasting trophic environments of the South East Pacific. Biogeosciences, 2008, 5, 949-968.	3.3	28
140	Evaluation of the utility of chemotaxonomic pigments as a surrogate for particulate DMSP. Limnology and Oceanography, 2001, 46, 989-995.	3.1	27
141	Partitioning total spectral absorption in phytoplankton and colored detrital material contributions. Limnology and Oceanography: Methods, 2007, 5, 384-395.	2.0	27
142	Particulate concentration and seasonal dynamics in the mesopelagic ocean based on the backscattering coefficient measured with Biogeochemicalâ€Argo floats. Geophysical Research Letters, 2017, 44, 6933-6939.	4.0	27
143	Understanding the Dynamics of the Oxicâ€Anoxic Interface in the Black Sea. Geophysical Research Letters, 2018, 45, 864-871.	4.0	27
144	Evaluating tropical phytoplankton phenology metrics using contemporary tools. Scientific Reports, 2019, 9, 674.	3.3	26

#	Article	IF	CITATIONS
145	Guidelines Towards an Integrated Ocean Observation System for Ecosystems and Biogeochemical Cycles., 2010,,.		26
146	Growth and specific P-uptake rates of bacterial and phytoplanktonic communities in the Southeast Pacific (BIOSOPE cruise). Biogeosciences, 2007, 4, 941-956.	3.3	25
147	Seasonal dynamics in colored dissolved organic matter in the Mediterranean Sea: Patterns and drivers. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 83, 93-101.	1.4	25
148	Beyond Chlorophyll Fluorescence: The Time is Right to Expand Biological Measurements in Ocean Observing Programs. Limnology and Oceanography Bulletin, 2018, 27, 89-90.	0.4	25
149	A Regional Neural Network Approach to Estimate Water-Column Nutrient Concentrations and Carbonate System Variables in the Mediterranean Sea: CANYON-MED. Frontiers in Marine Science, 2020, 7, .	2.5	25
150	Detection of Coccolithophore Blooms With BioGeoChemicalâ€Argo Floats. Geophysical Research Letters, 2020, 47, e2020GL090559.	4.0	24
151	An axenic cyclostat of Prochlorococcus PCC 9511 with a simulator of natural light regimes. Journal of Applied Phycology, 2001, 13, 135-142.	2.8	23
152	The genus <i>Asterodinium</i> (Dinophyceae) as a possible biological indicator of warming in the western Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom, 2003, 83, 173-174.	0.8	23
153	Water intrusions and particle signatures in the Black Sea: a Biogeochemical-Argo float investigation. Ocean Dynamics, 2017, 67, 1119-1136.	2.2	23
154	Vertical distribution of chlorophyll & amp;lt;l& amp;gt;a& amp;lt;/l& amp;gt; concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean. Earth System Science Data, 2015, 7, 261-273.	9.9	23
155	Impact of Mesoscale Eddies on Deep Chlorophyll Maxima. Geophysical Research Letters, 2021, 48, e2021GL093470.	4.0	22
156	Distribution and fluxes of aggregates & amp;gt; $100 \hat{l}$ 4m in the upper kilometer of the South-Eastern Pacific. Biogeosciences, 2008, 5, 1361-1372.	3.3	22
157	The Oceans' Biological Carbon Pumps: Framework for a Research Observational Community Approach. Frontiers in Marine Science, 2021, 8, .	2.5	21
158	Detecting Mesopelagic Organisms Using Biogeochemicalâ€Argo Floats. Geophysical Research Letters, 2020, 47, e2019GL086088.	4.0	20
159	Small Phytoplankton Shapes Colored Dissolved Organic Matter Dynamics in the North Atlantic Subtropical Gyre. Geophysical Research Letters, 2019, 46, 12183-12191.	4.0	18
160	Relationship between the qualitative nature of particles and copepod faeces in the Irish Sea. Marine Chemistry, 1992, 40, 231-248.	2.3	17
161	Organic Carbon Export and Loss Rates in the Red Sea. Global Biogeochemical Cycles, 2020, 34, e2020GB006650.	4.9	17
162	Integrating the Ocean Observing System: Mobile Platforms. , 2010, , .		17

#	Article	IF	CITATIONS
163	Biogeochemical Argo: The Test Case of the NAOS Mediterranean Array. Frontiers in Marine Science, 2020, 7, .	2.5	16
164	Relaxation of Wind Stress Drives the Abrupt Onset of Biological Carbon Uptake in the Kerguelen Bloom: A Multisensor Approach. Geophysical Research Letters, 2020, 47, e2019GL085992.	4.0	15
165	Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean. Biogeosciences, 2022, 19, 1245-1275.	3.3	15
166	Silicon cycle in the tropical South Pacific: contribution to the global Si cycle and evidence for an active pico-sized siliceous plankton. Biogeosciences, 2018, 15, 5595-5620.	3.3	14
167	ESTIMATION OF OCEANIC PARTICULATE ORGANIC CARBON WITH MACHINE LEARNING. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-2-2020, 949-956.	0.0	12
168	The MALINA oceanographic expedition: how do changes in ice cover, permafrost and UV radiation impact biodiversity and biogeochemical fluxes in the Arctic Ocean?. Earth System Science Data, 2021, 13, 1561-1592.	9.9	11
169	Preparing the New Phase of Argo: Scientific Achievements of the NAOS Project. Frontiers in Marine Science, 2020, 7, .	2.5	10
170	Siliceous phytoplankton production and export related to trans-frontal dynamics of the Almeria-Oran frontal system (western Mediterranean Sea) during winter. Journal of Geophysical Research, 2004, 109, .	3.3	9
171	Preparing the New Phase of Argo: Technological Developments on Profiling Floats in the NAOS Project. Frontiers in Marine Science, 2020, 7, .	2.5	9
172	Hyperspectral Radiometry on Biogeochemical-Argo Floats: A Bright Perspective for Phytoplankton Diversity. Oceanography, 2021, , 90-91.	1.0	7
173	Towards an Integrated Observing System for Ocean Carbon and Biogeochemistry at a Time of Change. , 2010, , .		6
174	Biogeographical Classification of the Global Ocean From BGCâ€Argo Floats. Global Biogeochemical Cycles, 2022, 36, .	4.9	6
175	A turbidostat driven and controlled by microcomputer. Aquaculture, 1985, 48, 91-95.	3.5	5
176	Enhancement of phytoplankton biomass leeward of Tahiti as observed by Biogeochemical-Argo floats. Journal of Marine Systems, 2020, 204, 103284.	2.1	5
177	BGCâ€Argo Floats Observe Nitrate Injection and Spring Phytoplankton Increase in the Surface Layer of Levantine Sea (Eastern Mediterranean). Geophysical Research Letters, 2021, 48, e2020GL091649.	4.0	5
178	The suspended small-particle layer in the oxygen-poor Black Sea: a proxy for delineating the effective N ₂ -yielding section. Biogeosciences, 2020, 17, 6491-6505.	3.3	5
179	OneArgo: A New Paradigm for Observing the Global Ocean. Marine Technology Society Journal, 2022, 56, 84-90.	0.4	5
180	Pigment dynamics associated with the grazing of a ciliate and a flagellate feeding on a cyanobacterium. Oceanologica Acta: European Journal of Oceanology - Revue Europeene De Oceanologie, 1998, 21, 581-588.	0.7	4

#	Article	lF	CITATIONS
181	Toward deeper development of Biogeochemical-Argo floats. Atmospheric and Oceanic Science Letters, 2018, 11, 287-290.	1.3	4
182	Correction of Biogeochemical-Argo Radiometry for Sensor Temperature-Dependence and Drift: Protocols for a Delayed-Mode Quality Control. Sensors, 2021, 21, 6217.	3.8	4
183	Biological production in two contrasted regions of the Mediterranean Sea during the oligotrophic period: an estimate based on the diel cycle of optical properties measured by BioGeoChemical-Argo profiling floats. Biogeosciences, 2022, 19, 1165-1194.	3.3	4
184	Correction to "Variations of light absorption by suspended particles with chlorophyllaconcentration in oceanic (case 1) waters: Analysis and implications for bio-optical models―by A. Bricaud et al Journal of Geophysical Research, 1999, 104, 8025-8025.	3.3	3
185	Photoacclimatization in the zooxanthellae of Pocillopora verrucosa and comparison with a pelagic algal community. Oceanologica Acta: European Journal of Oceanology - Revue Europeene De Oceanologie, 2002, 25, 125-134.	0.7	3
186	<title>Spatial variations of photosynthetic parameters in equatorial Pacific: forcing by vertical mixing and light penetration</title> ., 1997, 2963, 880.		1
187	<title>Variations in the water column photosynthetic cross section for Antarctic coastal waters</title> ., 1997,,.		1
188	<title>Spatial variability in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetic pigments in the equatorial Pacific</title> ., 1997, 2963, 179.		0