Matteo Colangeli

List of Publications by Citations

Source: https://exaly.com/author-pdf/5948627/matteo-colangeli-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

53
papers

548
citations

14
papers

660
ext. papers

22
g-index

24
ext. citations

24
citations

24
citations

24
citations

2-4
citations

2-4
citations

2-4
citations

#	Paper	IF	Citations
53	Stochastic Parameterization: Toward a New View of Weather and Climate Models. <i>Bulletin of the American Meteorological Society</i> , 2017 , 98, 565-588	6.1	176
52	A meaningful expansion around detailed balance. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2011 , 44, 095001	2	39
51	Beyond the linear fluctuation-dissipation theorem: the role of causality. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2012 , 2012, P05013	1.9	21
50	Nonequilibrium two-dimensional Ising model with stationary uphill diffusion. <i>Physical Review E</i> , 2018 , 97, 030103	2.4	19
49	Latent heat and the Fourier law. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2016 , 380, 1710-1713	2.3	19
48	Fluctuation-dissipation relation for chaotic non-Hamiltonian systems. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2012 , 2012, L04002	1.9	18
47	Equilibrium, fluctuation relations and transport for irreversible deterministic dynamics. <i>Physica D: Nonlinear Phenomena</i> , 2012 , 241, 681-691	3.3	17
46	Microscopic models for uphill diffusion. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2017 , 50, 435002	2	17
45	Stationary uphill currents in locally perturbed zero-range processes. <i>Physical Review E</i> , 2017 , 96, 05213	7 2.4	17
44	From hyperbolic regularization to exact hydrodynamics for linearized Grad's equations. <i>Physical Review E</i> , 2007 , 75, 051204	2.4	17
43	Particle Models with Self Sustained Current. <i>Journal of Statistical Physics</i> , 2017 , 167, 1081-1111	1.5	16
42	Elements of a unified framework for response formulae. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2014 , 2014, P01002	1.9	15
41	Exact linear hydrodynamics from the Boltzmann equation. <i>Physical Review Letters</i> , 2008 , 100, 214503	7.4	15
40	Fick and Fokker P lanck Diffusion Law in Inhomogeneous Media. <i>Journal of Statistical Physics</i> , 2019 , 174, 469-493	1.5	15
39	Boltzmann equation and hydrodynamic fluctuations. <i>Physical Review E</i> , 2009 , 80, 051202	2.4	14
38	Hyperbolicity of exact hydrodynamics for three-dimensional linearized Grad's equations. <i>Physical Review E</i> , 2007 , 76, 022201	2.4	12
37	Blockage-induced condensation controlled by a local reaction. <i>Physical Review E</i> , 2016 , 94, 042116	2.4	10

36	Steady state fluctuation relations and time reversibility for non-smooth chaotic maps. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2011 , 2011, P04021	1.9	9	
35	Effects of Communication Efficiency and Exit Capacity on Fundamental Diagrams for Pedestrian Motion in an Obscure TunnelA Particle System Approach. <i>Multiscale Modeling and Simulation</i> , 2016 , 14, 906-922	1.8	8	
34	Modelling Interactions Between Active and Passive Agents Moving Through Heterogeneous Environments. <i>Modeling and Simulation in Science, Engineering and Technology</i> , 2018 , 211-257	0.8	6	
33	From Kinetic Models to Hydrodynamics. SpringerBriefs in Mathematics, 2013,	0.6	6	
32	A lattice model approach to the morphology formation from ternary mixtures during the evaporation of one component. <i>European Physical Journal: Special Topics</i> , 2019 , 228, 55-68	2.3	5	
31	Focus on some nonequilibrium issues. <i>Chaos, Solitons and Fractals</i> , 2014 , 64, 2-15	9.3	5	
30	Current in a quantum driven thermostatted system with off-diagonal disorder. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2013 , 392, 2977-2987	3.3	5	
29	Trapping in bottlenecks: Interplay between microscopic dynamics and large scale effects. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2017 , 488, 30-38	3.3	5	
28	Fluctuations in quantum one-dimensional thermostatted systems with off-diagonal disorder. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2013 , 2013, P02009	1.9	5	
27	Does communication enhance pedestrians transport in the dark?. <i>Comptes Rendus - Mecanique</i> , 2016 , 344, 19-23	2.1	4	
26	A lattice model for active-passive pedestrian dynamics: a quest for drafting effects. <i>Mathematical Biosciences and Engineering</i> , 2019 , 17, 460-477	2.1	4	
25	A Kac Model for Fermions. <i>Archive for Rational Mechanics and Analysis</i> , 2015 , 216, 359-413	2.3	3	
24	Uphill migration in coupled driven particle systems. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2019 , 2019, 073203	1.9	3	
23	When diffusion faces drift: Consequences of exclusion processes for bi-directional pedestrian flows. <i>Physica D: Nonlinear Phenomena</i> , 2020 , 413, 132651	3.3	3	
22	Deterministic reversible model of non-equilibrium phase transitions and stochastic counterpart. Journal of Physics A: Mathematical and Theoretical, 2020 , 53, 305001	2	3	
21	Stationary Currents in Particle Systems with Constrained Hopping Rates. <i>Journal of Non-Equilibrium Thermodynamics</i> , 2016 , 41,	3.8	3	
20	Transport in Quantum Multi-barrier Systems as Random Walks on a Lattice. <i>Journal of Statistical Physics</i> , 2019 , 176, 692-709	1.5	2	
19	Pattern recognition at different scales: A statistical perspective. <i>Chaos, Solitons and Fractals</i> , 2014 , 64, 48-66	9.3	2	

18	A continuum limit for the Kronig P enney model. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2015 , 2015, P06006	1.9	2
17	Highly Anisotropic Scaling Limits. <i>Journal of Statistical Physics</i> , 2016 , 162, 997-1030	1.5	1
16	Role of ergodicity in the transient Fluctuation Relation and a new relation for a dissipative non-chaotic map. <i>Chaos, Solitons and Fractals,</i> 2016 , 83, 54-66	9.3	1
15	Nonequilibrium response from the dissipative Liouville equation. <i>Journal of Statistical Mechanics:</i> Theory and Experiment, 2010 , 2010, P12019	1.9	1
14	Fluctuation Relations and Nonequilibrium Response for Chaotic Dissipative Dynamics. <i>Understanding Complex Systems</i> , 2013 , 3-38	0.4	1
13	Deterministic model of battery, uphill currents, and nonequilibrium phase transitions. <i>Physical Review E</i> , 2021 , 103, 032119	2.4	1
12	Residence time in one-dimensional random walks in presence of moving defects. <i>Probabilistic Engineering Mechanics</i> , 2022 , 103260	2.6	1
11	Emergence of stationary uphill currents in 2D Ising models: the role of reservoirs and boundary conditions. <i>European Physical Journal: Special Topics</i> , 2019 , 228, 69-91	2.3	O
10	A combinatorial representation for the invariant measure of diffusion processes on metric graphs. <i>Alea</i> , 2021 , 18, 1773	0.5	0
9	Exact response theory and Kuramoto dynamics. <i>Physica D: Nonlinear Phenomena</i> , 2021 , 133076	3.3	O
8	Toward a Quantitative Reduction of the SIR Epidemiological Model. <i>Modeling and Simulation in Science, Engineering and Technology</i> , 2021 , 185-201	0.8	0
7	Small Scale Hydrodynamics. <i>Understanding Complex Systems</i> , 2015 , 65-104	0.4	
6	Hydrodynamic Spectrum of Simple Fluids. SpringerBriefs in Mathematics, 2013, 37-47	0.6	
5	Hydrodynamic Fluctuations from the Boltzmann Equation. SpringerBriefs in Mathematics, 2013, 49-73	0.6	
4	From the Phase Space to the Boltzmann Equation. SpringerBriefs in Mathematics, 2013, 3-21	0.6	
3	Methods of Reduced Description. <i>SpringerBriefs in Mathematics</i> , 2013 , 23-35	0.6	
2	Grad⊠ 13-Moments System. <i>SpringerBriefs in Mathematics</i> , 2013 , 75-94	0.6	
1	Uniqueness and stability with respect to parameters of solutions to a fluid-like driven system for active-passive pedestrian dynamics. <i>Journal of Mathematical Analysis and Applications</i> , 2021 , 495, 1247	02 ^{1.1}	