Manuel Gliech

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5948130/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nature Communications, 2015, 6, 8625.	5.8	694
2	In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nature Communications, 2020, 11, 2522.	5.8	594
3	Tracking Catalyst Redox States and Reaction Dynamics in Ni–Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH. Journal of the American Chemical Society, 2017, 139, 2070-2082.	6.6	518
4	Design Criteria, Operating Conditions, and Nickel–Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis. ChemSusChem, 2016, 9, 962-972.	3.6	467
5	Electrochemical Catalyst–Support Effects and Their Stabilizing Role for IrO _{<i>x</i>} Nanoparticle Catalysts during the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 12552-12563.	6.6	451
6	A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nature Catalysis, 2018, 1, 841-851.	16.1	424
7	Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nature Catalysis, 2018, 1, 711-719.	16.1	415
8	Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nature Materials, 2020, 19, 77-85.	13.3	400
9	Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chemical Science, 2015, 6, 3321-3328.	3.7	332
10	An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy and Environmental Science, 2016, 9, 2020-2024.	15.6	221
11	Direct Electrolytic Splitting of Seawater: Activity, Selectivity, Degradation, and Recovery Studied from the Molecular Catalyst Structure to the Electrolyzer Cell Level. Advanced Energy Materials, 2018, 8, 1800338.	10.2	185
12	Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3dâ€Transition Metal Layered Double Hydroxides. Angewandte Chemie - International Edition, 2021, 60, 14446-14457.	7.2	170
13	Tantalum Nitride Nanorod Arrays: Introducing Ni–Fe Layered Double Hydroxides as a Cocatalyst Strongly Stabilizing Photoanodes in Water Splitting. Chemistry of Materials, 2015, 27, 2360-2366.	3.2	158
14	Elemental Anisotropic Growth and Atomic-Scale Structure of Shape-Controlled Octahedral Pt–Ni–Co Alloy Nanocatalysts. Nano Letters, 2015, 15, 7473-7480.	4.5	156
15	Electrocatalytic CO ₂ Reduction on CuO _{<i>x</i>} Nanocubes: Tracking the Evolution of Chemical State, Geometric Structure, and Catalytic Selectivity using Operando Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 17974-17983.	7.2	138
16	Electrochemical processes on solid shaped nanoparticles with defined facets. Chemical Society Reviews, 2018, 47, 715-735.	18.7	129
17	Dynamical changes of a Ni-Fe oxide water splitting catalyst investigated at different pH. Catalysis Today, 2016, 262, 65-73.	2.2	86
18	The Effect of Surface Site Ensembles on the Activity and Selectivity of Ethanol Electrooxidation by Octahedral PtNiRh Nanoparticles. Angewandte Chemie - International Edition, 2017, 56, 6533-6538.	7.2	81

2

MANUEL GLIECH

#	Article	IF	CITATIONS
19	Electrocatalytic CO ₂ Reduction on CuO _{<i>x</i>} Nanocubes: Tracking the Evolution of Chemical State, Geometric Structure, and Catalytic Selectivity using Operando Spectroscopy. Angewandte Chemie, 2020, 132, 18130-18139.	1.6	45
20	Electrochemical Dealloying of Bimetallic ORR Nanoparticle Catalysts at Constant Electrode Potentials. Journal of the Electrochemical Society, 2015, 162, F403-F409.	1.3	40
21	pH-Induced versus Oxygen-Induced Surface Enrichment and Segregation Effects in Pt–Ni Alloy Nanoparticle Fuel Cell Catalysts. ACS Catalysis, 2017, 7, 6376-6384.	5.5	40
22	Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3dâ€Transition Metal Layered Double Hydroxides. Angewandte Chemie, 2021, 133, 14567-14578.	1.6	30
23	The Effect of Surface Site Ensembles on the Activity and Selectivity of Ethanol Electrooxidation by Octahedral PtNiRh Nanoparticles. Angewandte Chemie, 2017, 129, 6633-6638.	1.6	25
24	Synthesis–structure correlations of manganese–cobalt mixed metal oxide nanoparticles. Journal of Energy Chemistry, 2016, 25, 278-281.	7.1	23
25	Molecular Analysis of the Unusual Stability of an IrNbO <i>_x</i> Catalyst for the Electrochemical Water Oxidation to Molecular Oxygen (OER). ACS Applied Materials & Interfaces, 2021, 13, 3748-3761.	4.0	20
26	Comparative assessment of synthetic strategies toward active platinum–rhodium–tin electrocatalysts for efficient ethanol electro-oxidation. Journal of Power Sources, 2015, 294, 299-304.	4.0	18
27	Supported metal oxide nanoparticle electrocatalysts: How immobilization affects catalytic performance. Applied Catalysis A: General, 2018, 568, 11-15.	2.2	7
28	Synthesis of Ni–SiO ₂ /C Supported Platinum Catalysts for Improved Electrochemical Activity Towards Ethanol Oxidation. Journal of Nanoscience and Nanotechnology, 2019, 19, 4590-4598.	0.9	4
29	Solute Incorporation at Oxide–Oxide Interfaces Explains How Ternary Mixedâ€Metal Oxide Nanocrystals Support Elementâ€Specific Anisotropic Growth, Advanced Functional Materials, 2020, 30, 1909054.	7.8	2