Colin P Osborne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5947957/publications.pdf

Version: 2024-02-01

66250 73587 7,348 113 44 79 citations h-index g-index papers 118 118 118 8501 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Disparities among crop species in the evolution of growth rates: the role of distinct origins and domestication histories. New Phytologist, 2022, 233, 995-1010.	3.5	8
2	Drought exposure leads to rapid acquisition and inheritance of herbicide resistance in the weed <i>Alopecurus myosuroides</i> . Ecology and Evolution, 2022, 12, e8563.	0.8	9
3	Upregulation of C ₄ characteristics does not consistently improve photosynthetic performance in intraspecific hybrids of a grass. Plant, Cell and Environment, 2022, 45, 1398-1411.	2.8	3
4	Savanna fire regimes depend on grass trait diversity. Trends in Ecology and Evolution, 2022, 37, 749-758.	4.2	8
5	Hydroclimate variability was the main control on fire activity in northern Africa over the last 50,000 years. Quaternary Science Reviews, 2022, 288, 107578.	1.4	4
6	Resprouting grasses are associated with less frequent fire than seeders. New Phytologist, 2021, 230, 832-844.	3.5	24
7	The origins of agriculture: Intentions and consequences. Journal of Archaeological Science, 2021, 125, 105290.	1.2	23
8	Traits explain sorting of C ₄ grasses along a global precipitation gradient. Ecology and Evolution, 2021, 11, 2669-2680.	0.8	7
9	Developmental and biophysical determinants of grass leaf size worldwide. Nature, 2021, 592, 242-247.	13.7	43
10	Low dispersal and ploidy differences in a grass maintain photosynthetic diversity despite gene flow and habitat overlap. Molecular Ecology, 2021, 30, 2116-2130.	2.0	12
11	Crop origins explain variation in global agricultural relevance. Nature Plants, 2021, 7, 598-607.	4.7	17
12	Large seeds provide an intrinsic growth advantage that depends on leaf traits and root allocation. Functional Ecology, 2021, 35, 2168-2178.	1.7	9
13	Land degradation in South Africa: Justice and climate change in tension. People and Nature, 2021, 3, 978-989.	1.7	14
14	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	2.4	73
15	Continued Adaptation of C4 Photosynthesis After an Initial Burst of Changes in the Andropogoneae Grasses. Systematic Biology, 2020, 69, 445-461.	2.7	27
16	The morphogenesis of fast growth in plants. New Phytologist, 2020, 228, 1306-1315.	3.5	3
17	Lineageâ€based functional types: characterising functional diversity to enhance the representation of ecological behaviour in Land Surface Models. New Phytologist, 2020, 228, 15-23.	3.5	20
18	High silicon concentrations in grasses are linked to environmental conditions and not associated with C ₄ photosynthesis. Global Change Biology, 2020, 26, 7128-7143.	4.2	15

#	Article	IF	Citations
19	C ₄ photosynthesis and the economic spectra of leaf and root traits independently influence growth rates in grasses. Journal of Ecology, 2020, 108, 1899-1909.	1.9	20
20	The global distribution of grass functional traits within grassy biomes. Journal of Biogeography, 2020, 47, 553-565.	1.4	24
21	Forest regeneration on European sheep pasture is an economically viable climate change mitigation strategy. Environmental Research Letters, 2020, 15, 104090.	2.2	9
22	Contrasted histories of organelle and nuclear genomes underlying physiological diversification in a grass species. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201960.	1.2	18
23	Frequent fires prime plant developmental responses to burning. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191315.	1.2	13
24	Editorial: Revisiting the Biome Concept With A Functional Lens. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	3
25	Phylogeny and ecological processes influence grass coexistence at different spatial scales within the steppe biome. Oecologia, 2019, 191, 25-38.	0.9	6
26	Comment on "The global tree restoration potential― Science, 2019, 366, .	6.0	185
27	Population-Specific Selection on Standing Variation Generated by Lateral Gene Transfers in a Grass. Current Biology, 2019, 29, 3921-3927.e5.	1.8	26
28	Mesophyll porosity is modulated by the presence of functional stomata. Nature Communications, 2019, 10, 2825.	5.8	63
29	A theoretical analysis of how plant growth is limited by carbon allocation strategies and respiration. In Silico Plants, 2019, 1 , .	0.8	8
30	Key changes in gene expression identified for different stages of C4 evolution in Alloteropsis semialata. Journal of Experimental Botany, 2019, 70, 3255-3268.	2.4	23
31	Lateral transfers of large DNA fragments spread functional genes among grasses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4416-4425.	3.3	94
32	Re-analysis of archaeobotanical remains from pre- and early agricultural sites provides no evidence for a narrowing of the wild plant food spectrum during the origins of agriculture in southwest Asia. Vegetation History and Archaeobotany, 2019, 28, 449-463.	1.0	22
33	C ₄ anatomy can evolve via a single developmental change. Ecology Letters, 2019, 22, 302-312.	3.0	40
34	C 4 savanna grasses fail to maintain assimilation in drying soil under low CO 2 compared with C 3 trees despite lower leaf water demand. Functional Ecology, 2019, 33, 388-398.	1.7	10
35	Bundle sheath chloroplast volume can house sufficient Rubisco to avoid limiting C4 photosynthesis during chilling. Journal of Experimental Botany, 2019, 70, 357-365.	2.4	9
36	Gene duplication and dosage effects during the early emergence of C4 photosynthesis in the grass genus Alloteropsis. Journal of Experimental Botany, 2018, 69, 1967-1980.	2.4	29

#	Article	IF	Citations
37	C ₄ photosynthesis evolved in warm climates but promoted migration to cooler ones. Ecology Letters, 2018, 21, 376-383.	3.0	30
38	Highly Expressed Genes Are Preferentially Co-Opted for C4 Photosynthesis. Molecular Biology and Evolution, 2018, 35, 94-106.	3.5	57
39	Global grass (<scp>P</scp> oaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biological Reviews, 2018, 93, 1125-1144.	4.7	178
40	Nutrient sink limitation constrains growth in two barley species with contrasting growth strategies. Plant Direct, 2018, 2, e00094.	0.8	11
41	Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nature Ecology and Evolution, 2018, 2, 1808-1817.	3.4	59
42	Climatic Controls on C4 Grassland Distributions During the Neogene: A Model-Data Comparison. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	15
43	Human impacts in African savannas are mediated by plant functional traits. New Phytologist, 2018, 220, 10-24.	3.5	114
44	Introgression and repeated co-option facilitated the recurrent emergence of C ₄ photosynthesis among close relatives. Evolution; International Journal of Organic Evolution, 2017, 71, 1541-1555.	1.1	51
45	Unconscious selection drove seed enlargement in vegetable crops. Evolution Letters, 2017, 1, 64-72.	1.6	37
46	Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity. Plant Journal, 2017, 92, 981-994.	2.8	74
47	Comment on "The extent of forest in dryland biomes― Science, 2017, 358, .	6.0	57
48	Still armed after domestication? Impacts of domestication and agronomic selection on silicon defences in cereals. Functional Ecology, 2017, 31, 2108-2117.	1.7	35
49	Yield responses of wild C ₃ and C ₄ crop progenitors to subambient CO ₂ limitation in the origin of agriculture. Global Change Biology, 2017, 23, 380-393.	4.2	13
50	How did the domestication of Fertile Crescent grain crops increase their yields?. Functional Ecology, 2017, 31, 387-397.	1.7	93
51	Evolutionary implications of C ₃ –C ₄ intermediates in the grass <i>Alloteropsis semialata</i> . Plant, Cell and Environment, 2016, 39, 1874-1885.	2.8	64
52	Determinants of flammability in savanna grass species. Journal of Ecology, 2016, 104, 138-148.	1.9	123
53	Preference for C ₄ shade grasses increases hatchling performance in the butterfly, <i>Bicyclus safitza</i> . Ecology and Evolution, 2016, 6, 5246-5255.	0.8	13
54	Carbon source–sink limitations differ between two species with contrasting growth strategies. Plant, Cell and Environment, 2016, 39, 2460-2472.	2.8	53

#	Article	IF	CITATIONS
55	Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait. Molecular Ecology, 2016, 25, 6107-6123.	2.0	51
56	Reduced plant water status under sub-ambient <i>p</i> CO ₂ limits plant productivity in the wild progenitors of C ₃ and C ₄ cereals. Annals of Botany, 2016, 118, 1163-1173.	1.4	5
57	C4 photosynthesis boosts growth by altering physiology, allocation and size. Nature Plants, 2016, 2, 16038.	4.7	81
58	The stable isotope ecology of mycalesine butterflies: implications for plant–insectÂcoâ€evolution. Functional Ecology, 2016, 30, 1936-1946.	1.7	20
59	How can we make plants grow faster? A source–sink perspective on growth rate. Journal of Experimental Botany, 2016, 67, 31-45.	2.4	228
60	Water relations traits of C4 grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability. Journal of Experimental Botany, 2015, 66, 761-773.	2.4	51
61	Genetic Enablers Underlying the Clustered Evolutionary Origins of C4 Photosynthesis in Angiosperms. Molecular Biology and Evolution, 2015, 32, 846-858.	3.5	57
62	Were Fertile Crescent crop progenitors higher yielding than other wild species that were never domesticated?. New Phytologist, 2015, 207, 905-913.	3.5	26
63	Photosynthetic innovation broadens the niche within a single species. Ecology Letters, 2015, 18, 1021-1029.	3.0	75
64	Fire ecology of C ₃ and C ₄ grasses depends on evolutionary history and frequency of burning but not photosynthetic type. Ecology, 2015, 96, 2679-2691.	1.5	65
65	Biogeographically distinct controls on <scp>C</scp> ₃ and <scp>C</scp> ₄ grass distributions: merging community and physiological ecology. Global Ecology and Biogeography, 2015, 24, 304-313.	2.7	33
66	A global database of <scp>C</scp> ₄ photosynthesis in grasses. New Phytologist, 2014, 204, 441-446.	3.5	123
67	Physiological advantages of C ₄ grasses in the field: a comparative experiment demonstrating the importance of drought. Global Change Biology, 2014, 20, 1992-2003.	4.2	93
68	Mechanisms driving an unusual latitudinal diversity gradient for grasses. Global Ecology and Biogeography, 2014, 23, 61-75.	2.7	43
69	Molecular Dating, Evolutionary Rates, and the Age of the Grasses. Systematic Biology, 2014, 63, 153-165.	2.7	155
70	Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species. Journal of Experimental Botany, 2014, 65, 3579-3593.	2.4	102
71	The evolutionary ecology of C ₄ plants. New Phytologist, 2014, 204, 765-781.	3.5	98
72	Deconstructing Kranz anatomy to understand C4 evolution. Journal of Experimental Botany, 2014, 65, 3357-3369.	2.4	103

#	Article	IF	CITATIONS
73	Functional Traits Differ between Cereal Crop Progenitors and Other Wild Grasses Gathered in the Neolithic Fertile Crescent. PLoS ONE, 2014, 9, e87586.	1.1	41
74	The recurrent assembly of C4 photosynthesis, an evolutionary tale. Photosynthesis Research, 2013, 117, 163-175.	1.6	43
75	Increased leaf mesophyll porosity following transient retinoblastomaâ€related protein silencing is revealed by microcomputed tomography imaging and leads to a systemâ€evel physiological response to the altered cell division pattern. Plant Journal, 2013, 76, 914-929.	2.8	28
76	Anatomical enablers and the evolution of C ₄ photosynthesis in grasses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1381-1386.	3.3	239
77	Taxonome: a software package for linking biological species data. Ecology and Evolution, 2013, 3, 1262-1265.	0.8	18
78	Differential freezing resistance and photoprotection in C3 and C4 eudicots and grasses. Journal of Experimental Botany, 2013, 64, 2183-2191.	2.4	8
79	Did greater burial depth increase the seed size of domesticated legumes?. Journal of Experimental Botany, 2013, 64, 4101-4108.	2.4	51
80	Photosynthetic acclimation and resource use by the C ₃ and C ₄ subspecies of <i><scp>A</scp> loteropsis semialata</i> in low <scp><scp>CO</scp></scp> 2 atmospheres. Global Change Biology, 2013, 19, 900-910.	4.2	21
81	Evolution of C ₄ plants: a new hypothesis for an interaction of CO ₂ and water relations mediated by plant hydraulics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 583-600.	1.8	172
82	Plant growth rates and seed size: a reâ€evaluation. Ecology, 2012, 93, 1283-1289.	1.5	54
83	A nonâ€ŧargeted metabolomics approach to quantifying differences in root storage between fast―and slowâ€growing plants. New Phytologist, 2012, 196, 200-211.	3.5	28
84	Phylogenetic niche conservatism in C4 grasses. Oecologia, 2012, 170, 835-845.	0.9	49
85	Fire and fireâ€adapted vegetation promoted C ₄ expansion in the late Miocene. New Phytologist, 2012, 195, 653-666.	3.5	131
86	Environmental factors determining the phylogenetic structure of C ₄ grass communities. Journal of Biogeography, 2012, 39, 232-246.	1.4	38
87	Adaptive Evolution of C4 Photosynthesis through Recurrent Lateral Gene Transfer. Current Biology, 2012, 22, 445-449.	1.8	121
88	Molecular phylogenies disprove a hypothesized C4 reversion in Eragrostis walteri (Poaceae). Annals of Botany, 2011, 107, 321-325.	1.4	22
89	C4 eudicots are not younger than C4 monocots. Journal of Experimental Botany, 2011, 62, 3171-3181.	2.4	115
90	Ecophysiological traits in C ₃ and C ₄ grasses: a phylogenetically controlled screening experiment. New Phytologist, 2010, 185, 780-791.	3.5	196

#	Article	IF	Citations
91	Experimental investigation of fire ecology in the C ₃ and C ₄ subspecies of <i>Alloteropsis semialata</i>). Journal of Ecology, 2010, 98, 1196-1203.	1.9	34
92	Was low atmospheric CO ₂ a limiting factor in the origin of agriculture?. Environmental Archaeology, 2010, 15, 113-123.	0.6	14
93	Partitioning the Components of Relative Growth Rate: How Important Is Plant Size Variation?. American Naturalist, 2010, 176, E152-E161.	1.0	114
94	Chapter 17 The Geologic History of C4 Plants. Advances in Photosynthesis and Respiration, 2010, , 339-357.	1.0	3
95	The Origins of C ₄ Grasslands: Integrating Evolutionary and Ecosystem Science. Science, 2010, 328, 587-591.	6.0	899
96	Can phylogenetics identify C4 origins and reversals?. Trends in Ecology and Evolution, 2010, 25, 403-409.	4.2	68
97	A molecular phylogeny of the genus Alloteropsis (Panicoideae, Poaceae) suggests an evolutionary reversion from C4 to C3 photosynthesis. Annals of Botany, 2009, 103, 127-136.	1.4	45
98	Ecological selection pressures for C ₄ photosynthesis in the grasses. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1753-1760.	1.2	151
99	Water-use responses of â€`living fossil' conifers to CO2 enrichment in a simulated Cretaceous polar environment. Annals of Botany, 2009, 104, 179-188.	1.4	19
100	Atmosphere, ecology and evolution: what drove the Miocene expansion of C ₄ grasslands?. Journal of Ecology, 2008, 96, 35-45.	1.9	169
101	Seasonal differences in photosynthesis between the C ₃ and C ₄ subspecies of <i>Alloteropsis semialata</i> are offset by frost and drought. Plant, Cell and Environment, 2008, 31, 1038-1050.	2.8	36
102	Response of wild C ₄ crop progenitors to subambient CO ₂ highlights a possible role in the origin of agriculture. Global Change Biology, 2008, 14, 576-587.	4.2	28
103	Leaf cold acclimation and freezing injury in C3 and C4 grasses of the Mongolian Plateau. Journal of Experimental Botany, 2008, 59, 4161-4170.	2.4	26
104	Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. Journal of Experimental Botany, 2007, 58, 1351-1363.	2.4	136
105	Low temperature effects on leaf physiology and survivorship in the C3 and C4 subspecies of Alloteropsis semialata. Journal of Experimental Botany, 2007, 59, 1743-1754.	2.4	41
106	Nature's green revolution: the remarkable evolutionary rise of C 4 plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 173-194.	1.8	224
107	The origin of the savanna biome. Global Change Biology, 2006, 12, 2023-2031.	4.2	310
108	Contrasting seasonal patterns of carbon gain in evergreen and deciduous trees of ancient polar forests. Paleobiology, 2005, 31, 141-150.	1.3	34

#	ARTICLE	IF	CITATION
109	Carbon loss by deciduous trees in a CO2-rich ancient polar environment. Nature, 2003, 424, 60-62.	13.7	62
110	The Penalty of a Long, Hot Summer. Photosynthetic Acclimation to High CO2 and Continuous Light in "Living Fossil―Conifers. Plant Physiology, 2003, 133, 803-812.	2.3	20
111	Sensitivity of tree growth to a high CO2 environment: consequences for interpreting the characteristics of fossil woods from ancient †greenhouse' worlds. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 182, 15-29.	1.0	15
112	A process-based model of conifer forest structure and function with special emphasis on leaf lifespan. Global Biogeochemical Cycles, 2002, 16, 44-1-44-23.	1.9	11
113	Does Leaf Position within a Canopy Affect Acclimation of Photosynthesis to Elevated CO2?1. Plant Physiology, 1998, 117, 1037-1045.	2.3	81