Francisco Jimenez-Colmenero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5947675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of household storage and cooking practices on quality attributes of pork burgers formulated with PUFA- and curcumin-loaded oleogels as healthy fat substitutes. LWT - Food Science and Technology, 2020, 119, 108909.	2.5	45
2	Impact of Culinary Procedures on Nutritional and Technological Properties of Reduced-Fat Longanizas Formulated with Chia (Salvia hispanica L.) or Oat (Avena sativa L.) Emulsion Gel. Foods, 2020, 9, 1847.	1.9	9
3	Effect of encapsulated <i>Lactobacillus plantarum</i> as probiotic on dryâ€sausages during chilled storage. International Journal of Food Science and Technology, 2020, 55, 3613-3621.	1.3	19
4	Modeling the influence of functional additives in beef sausages using a Box-Benkhen design: Effects on quality characteristics. Food Bioscience, 2020, 35, 100572.	2.0	4
5	Effect of different strategies of <i>Lactobacillus plantarum</i> incorporation in chorizo sausages. Journal of the Science of Food and Agriculture, 2019, 99, 6706-6712.	1.7	22
6	Coagulation, Thrombogenesis, and Insulin Resistance Markers in Increased-Cardiovascular-Risk Subjects Consuming Improved-Fat Meat Products. Journal of the American College of Nutrition, 2019, 38, 334-341.	1.1	2
7	Chia (Salvia hispanica L.) a Promising Alternative for Conventional and Gelled Emulsions: Technological and Lipid Structural Characteristics. Gels, 2019, 5, 19.	2.1	15
8	Assessment of a healthy oil combination structured in ethyl cellulose and beeswax oleogels as animal fat replacers in low-fat, PUFA-enriched pork burgers. Food and Bioprocess Technology, 2019, 12, 1068-1081.	2.6	58
9	Survival of probiotic <i>Lactobacillus plantarum</i> and <i>Enterococcus faecium</i> in alginate beads during stress treatments. Nutrition and Food Science, 2019, 49, 273-283.	0.4	5
10	Characterization of ethyl cellulose and beeswax oleogels and their suitability as fat replacers in healthier lipid pâtés development. Food Hydrocolloids, 2019, 87, 960-969.	5.6	146
11	Improving Lipid Content in Muscle-Based Food: New Strategies for Developing Fat Replacers Based on Gelling Processes Using Healthy Edible Oils. , 2019, , 185-198.		2
12	Effects of probiotic strains, Lactobacillus plantarum TN8 and Pediococcus acidilactici, on microbiological and physico-chemical characteristics of beef sausages. LWT - Food Science and Technology, 2018, 92, 195-203.	2.5	28
13	Implications of domestic food practices for the presence of bioactive components in meats with special reference to meat-based functional foods. Critical Reviews in Food Science and Nutrition, 2018, 58, 2334-2345.	5.4	16
14	Effect of polyphenols dietary grape by-products on chicken patties. European Food Research and Technology, 2018, 244, 367-377.	1.6	23
15	Quality Assessment of Fresh Meat from Several Species Based on Free Amino Acid and Biogenic Amine Contents during Chilled Storage. Foods, 2018, 7, 132.	1.9	94
16	Emulsion gels containing n-3 fatty acids and condensed tannins designed as functional fat replacers. Food Research International, 2018, 113, 465-473.	2.9	30
17	Technological characteristics of cold-set gelled double emulsion enriched with n-3 fatty acids: Effect of hydroxytyrosol addition and chilling storage. Food Research International, 2017, 100, 298-305.	2.9	14
18	Bioaccessibility of hydroxytyrosol and n-3 fatty acids as affected by the delivery system: simple, double and gelled double emulsions. Journal of Food Science and Technology, 2017, 54, 1785-1793.	1.4	25

#	Article	IF	CITATIONS
19	Olive oil based edible W/O/W emulsions stability as affected by addition of some acylglycerides. Journal of Food Engineering, 2017, 196, 18-26.	2.7	25
20	Effects of improved fat meat products consumption on emergent cardiovascular disease markers of male volunteers at cardiovascular risk. Journal of Physiology and Biochemistry, 2016, 72, 669-678.	1.3	6
21	Comparison of simple, double and gelled double emulsions as hydroxytyrosol and n-3 fatty acid delivery systems. Food Chemistry, 2016, 213, 49-57.	4.2	46
22	Double emulsions to improve frankfurter lipid content: impact of perilla oil and pork backfat. Journal of the Science of Food and Agriculture, 2016, 96, 900-908.	1.7	47
23	Essay of Different Extraction Procedures in Capelin Fish Meal for Biogenic Amine Determination by HPLC. Journal of Aquatic Food Product Technology, 2015, 24, 443-453.	0.6	4
24	Konjac-based oil bulking system for development of improved-lipid pork patties: Technological, microbiological and sensory assessment. Meat Science, 2015, 101, 95-102.	2.7	25
25	Shelf-life of n-3 PUFA enriched frankfurters formulated with a konjac-based oil bulking agent. LWT - Food Science and Technology, 2015, 62, 711-717.	2.5	8
26	Novel applications of oil-structuring methods as a strategy to improve the fat content of meat products. Trends in Food Science and Technology, 2015, 44, 177-188.	7.8	152
27	Oxidative stability of n-3 fatty acids encapsulated in filled hydrogel particles and of pork meat systems containing them. Food Chemistry, 2015, 184, 207-213.	4.2	46
28	Application of probiotic delivery systems in meat products. Trends in Food Science and Technology, 2015, 46, 120-131.	7.8	51
29	Filled hydrogel particles as a delivery system for nâ^3 long chain PUFA in low-fat frankfurters: Consequences for product characteristics with special reference to lipid oxidation. Meat Science, 2015, 110, 160-168.	2.7	18
30	IMPACT OF IMPROVED FAT-MEAT PRODUCTS CONSUMPTION ON ANTHROPOMETRIC MARKERS AND NUTRIENT INTAKES OF MALE VOLUNTEERS AT INCREASED CARDIOVASCULAR RISK. Nutricion Hospitalaria, 2015, 32, 710-21.	0.2	4
31	Effects of improved fat content of frankfurters and pâtés on lipid and lipoprotein profile of volunteers at increased cardiovascular risk: a placebo-controlled study. European Journal of Nutrition, 2014, 53, 83-93.	1.8	15
32	Influence of high pressure and heating treatments on physical parameters of water-in-oil-in-water emulsions. Innovative Food Science and Emerging Technologies, 2014, 23, 1-9.	2.7	25
33	Effect of cooking method on the fatty acid content of reduced-fat and PUFA-enriched pork patties formulated with a konjac-based oil bulking system. Meat Science, 2014, 98, 795-803.	2.7	28
34	Raman Spectroscopic Study of Structural Changes upon Chilling Storage of Frankfurters Containing Olive Oil Bulking Agents As Fat Replacers. Journal of Agricultural and Food Chemistry, 2014, 62, 5963-5971.	2.4	24
35	Physicochemical properties and riboflavin encapsulation in double emulsions with different lipid sources. LWT - Food Science and Technology, 2014, 59, 621-628.	2.5	63
36	Polysaccharide gels as oil bulking agents: Technological and structural properties. Food Hydrocolloids, 2014, 36, 374-381.	5.6	46

#	Article	IF	CITATIONS
37	Preparation and impact of multiple (water-in-oil-in-water) emulsions in meat systems. Food Chemistry, 2013, 141, 338-346.	4.2	109
38	Chilled storage characteristics of low-fat, n-3 PUFA-enriched dry fermented sausage reformulated with a healthy oil combination stabilized in a konjac matrix. Food Control, 2013, 31, 158-165.	2.8	46
39	Effect of preformed konjac gels, with and without olive oil, on the technological attributes and storage stability of merguez sausage. Meat Science, 2013, 93, 351-360.	2.7	50
40	Oil bulking agents based on polysaccharide gels in meat batters: A Raman spectroscopic study. Food Chemistry, 2013, 141, 3688-3694.	4.2	31
41	Storage stability of low-fat sodium reduced fresh merguez sausage prepared with olive oil in konjac gel matrix. Meat Science, 2013, 94, 438-446.	2.7	17
42	Potential applications of multiple emulsions in the development of healthy and functional foods. Food Research International, 2013, 52, 64-74.	2.9	207
43	Development and assessment of healthy properties of meat and meat products designed as functional foods. Meat Science, 2013, 95, 919-930.	2.7	179
44	Healthy oil combination stabilized in a konjac matrix as pork fat replacement in low-fat, PUFA-enriched, dry fermented sausages. LWT - Food Science and Technology, 2013, 51, 158-163.	2.5	70
45	Healthier oils stabilized in konjac matrix as fat replacers in nâ^'3 PUFA enriched frankfurters. Meat Science, 2013, 93, 757-766.	2.7	96
46	Konjac gel for use as potential fat analogue for healthier meat product development: Effect of chilled and frozen storage. Food Hydrocolloids, 2013, 30, 351-357.	5.6	70
47	Antioxidant activity of Hypericum perforatum L. extract in enriched n-3 PUFA pork meat systems during chilled storage. Food Research International, 2012, 48, 909-915.	2.9	24
48	Biogenic Amines in Low- and Reduced-Fat Dry Fermented Sausages Formulated with Konjac Gel. Journal of Agricultural and Food Chemistry, 2012, 60, 9242-9248.	2.4	7
49	Low-fat pork liver pâtés enriched with n-3 PUFA/konjac gel: Dynamic rheological properties and technological behaviour during chill storage. Meat Science, 2012, 92, 44-52.	2.7	23
50	Konjac gel as pork backfat replacer in dry fermented sausages: Processing and quality characteristics. Meat Science, 2012, 92, 144-150.	2.7	94
51	Lipid and protein structure analysis of frankfurters formulated with olive oil-in-water emulsion as animal fat replacer. Food Chemistry, 2012, 135, 133-139.	4.2	33
52	Enriched nâ^'3 PUFA/konjac gel low-fat pork liver pâté: Lipid oxidation, microbiological properties and biogenic amine formation during chilling storage. Meat Science, 2012, 92, 762-767.	2.7	34
53	BIOGENIC AMINE FORMATION IN REFRIGERATED FRESH SAUSAGE "CHORIZO―KEEPS IN MODIFIED ATMOSPHERE. Journal of Food Biochemistry, 2012, 36, 449-457.	1.2	11
54	Optimisation of a chromatographic procedure for determining biogenic amine concentrations in meat and meat products employing a cation-exchange column with a post-column system. Food Chemistry, 2012, 130, 1066-1073.	4.2	43

#	Article	IF	CITATIONS
55	Konjac gel fat analogue for use in meat products: Comparison with pork fats. Food Hydrocolloids, 2012, 26, 63-72.	5.6	113
56	Infrared Study of Structural Characteristics of Frankfurters Formulated with Olive Oil-in-Water Emulsions Stabilized with Casein As Pork Backfat Replacer. Journal of Agricultural and Food Chemistry, 2011, 59, 12998-13003.	2.4	17
57	Infrared spectroscopic analysis of structural features and interactions in olive oil-in-water emulsions stabilized with soy protein. Food Research International, 2011, 44, 360-366.	2.9	49
58	Quality characteristics of low-salt restructured poultry with microbial transglutaminase and seaweed. Meat Science, 2011, 87, 373-380.	2.7	81
59	A healthier oil combination and konjac gel as functional ingredients in low-fat pork liver pâté. Meat Science, 2011, 88, 241-248.	2.7	76
60	Production of biogenic amines by lactic acid bacteria and enterobacteria isolated from fresh pork sausages packaged in different atmospheres and kept under refrigeration. Meat Science, 2011, 88, 368-373.	2.7	53
61	Effect of cooking on the chemical composition of low-salt, low-fat Wakame/olive oil added beef patties with special reference to fatty acid content. Meat Science, 2011, 89, 27-34.	2.7	52
62	Low-fat frankfurters formulated with a healthier lipid combination as functional ingredient: Microstructure, lipid oxidation, nitrite content, microbiological changes and biogenic amine formation. Meat Science, 2011, 89, 65-71.	2.7	83
63	Olive oil-in-water emulsions stabilized with caseinate: Elucidation of protein–lipid interactions by infrared spectroscopy. Food Hydrocolloids, 2011, 25, 12-18.	5.6	72
64	Antioxidant activity of hydroxytyrosol in frankfurters enriched with n-3 polyunsaturated fatty acids. Food Chemistry, 2011, 129, 429-436.	4.2	41
65	Healthier lipid combination oilâ€inâ€water emulsions prepared with various protein systems: an approach for development of functional meat products. European Journal of Lipid Science and Technology, 2010, 112, 791-801.	1.0	70
66	Healthier lipid combination as functional ingredient influencing sensory and technological properties of lowâ€fat frankfurters. European Journal of Lipid Science and Technology, 2010, 112, 859-870.	1.0	82
67	Design and development of meat-based functional foods with walnut: Technological, nutritional and health impact. Food Chemistry, 2010, 123, 959-967.	4.2	64
68	Lutein-enriched frankfurter-type products: Physicochemical characteristics and lutein in vitro bioaccessibility. Food Chemistry, 2010, 120, 741-748.	4.2	23
69	Nutritional and Antioxidant Properties of Different Brown and Red Spanish Edible Seaweeds. Food Science and Technology International, 2010, 16, 361-370.	1.1	112
70	Technological and sensory characteristics of reduced/low-fat, low-salt frankfurters as affected by the addition of konjac and seaweed. Meat Science, 2010, 84, 356-363.	2.7	145
71	Nutritional composition of dry-cured ham and its role in a healthy diet. Meat Science, 2010, 84, 585-593.	2.7	120
72	Response to the letter to the editors of Dr. Demeyer. Meat Science, 2010, 86, 531.	2.7	1

#	Article	IF	CITATIONS
73	Frozen storage characteristics of low-salt and low-fat beef patties as affected by Wakame addition and replacing pork backfat with olive oil-in-water emulsion. Food Research International, 2010, 43, 1244-1254.	2.9	104
74	Influence of emulsified olive oil stabilizing system used for pork backfat replacement in frankfurters. Food Research International, 2010, 43, 2068-2076.	2.9	141
75	Production variations of nutritional composition of commercial meat products. Food Research International, 2010, 43, 2378-2384.	2.9	31
76	Elucidation of structural changes in soy protein isolate upon heating by Raman spectroscopy. International Journal of Food Science and Technology, 2009, 44, 711-717.	1.3	37
77	Application of flow injection analysis for determining sulphites in food and beverages: A review. Food Chemistry, 2009, 112, 487-493.	4.2	165
78	Antioxidant activity of Carob fruit extracts in cooked pork meat systems during chilled and frozen storage. Food Chemistry, 2009, 116, 748-754.	4.2	62
79	Effect of long frozen storage on the formation of triglyceride alteration compounds of pan-fried functional restructured beef steaks. Meat Science, 2009, 81, 726-730.	2.7	6
80	Low-fat frankfurters enriched with nâ^'3 PUFA and edible seaweed: Effects of olive oil and chilled storage on physicochemical, sensory and microbial characteristics. Meat Science, 2009, 83, 148-154.	2.7	121
81	Influence of adding Sea Spaghetti seaweed and replacing the animal fat with olive oil or a konjac gel on pork meat batter gelation. Potential protein/alginate association. Meat Science, 2009, 83, 209-217.	2.7	80
82	Design and nutritional properties of potential functional frankfurters based on lipid formulation, added seaweed and low salt content. Meat Science, 2009, 83, 255-262.	2.7	101
83	Composition and antioxidant capacity of low-salt meat emulsion model systems containing edible seaweeds. Meat Science, 2009, 83, 492-498.	2.7	109
84	Biogenic Amines in Seafood Products. , 2009, , 833-850.		4
85	Physicochemical and sensory properties of healthier frankfurters as affected by walnut and fat content. Food Chemistry, 2008, 107, 1547-1552.	4.2	53
86	Characteristics of meat batters with added native and preheated defatted walnut. Food Chemistry, 2008, 107, 1506-1514.	4.2	53
87	Influence of different types and proportions of added edible seaweeds on characteristics of low-salt gel/emulsion meat systems. Meat Science, 2008, 79, 767-776.	2.7	192
88	Biogenic amine production by Gram-positive bacteria isolated from Spanish dry-cured "chorizo― sausage treated with high pressure and kept in chilled storage. Meat Science, 2008, 80, 272-277.	2.7	32
89	Changes in fatty acids and polar material of restructured low-fat or walnut-added steaks pan-fried in olive oil. Meat Science, 2008, 80, 431-441.	2.7	16
90	Raman spectroscopic determination of structural changes in meat batters upon soy protein addition and heat treatment. Food Research International, 2008, 41, 765-772.	2.9	90

#	Article	IF	CITATIONS
91	Raman Spectroscopic Evaluation of Meat Batter Structural Changes Induced by Thermal Treatment and Salt Addition. Journal of Agricultural and Food Chemistry, 2008, 56, 7119-7124.	2.4	52
92	Determination of preservatives in meat products by flow injection analysis (FIA). Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2008, 25, 1167-1178.	1.1	34
93	Healthier lipid formulation approaches in meat-based functional foods. Technological options for replacement of meat fats by non-meat fats. Trends in Food Science and Technology, 2007, 18, 567-578.	7.8	237
94	Biogenic amines in pressurized vacuum-packaged cooked sliced ham under different chilled storage conditions. Meat Science, 2007, 75, 397-405.	2.7	36
95	Effect of total replacement of pork backfat with walnut on the nutritional profile of frankfurters. Meat Science, 2007, 77, 173-181.	2.7	71
96	Composition and physicochemical characteristics of restructured beef steaks containing walnuts as affected by cooking method. Meat Science, 2007, 77, 304-313.	2.7	88
97	Biogenic amine production in Spanish dry-cured "chorizo―sausage treated with high-pressure and kept in chilled storage. Meat Science, 2007, 77, 365-371.	2.7	54
98	Consequences of high-pressure processing of vacuum-packaged frankfurters on the formation of polyamines: Effect of chilled storage. Food Chemistry, 2007, 104, 202-208.	4.2	23
99	Application of flow injection analysis to determine protein-bound nitrite in meat products. Food Chemistry, 2007, 101, 812-816.	4.2	24
100	Biogenic Amine Formation and Nitrite Reactions in Meat Batter As Affected by High-Pressure Processing and Chilled Storage. Journal of Agricultural and Food Chemistry, 2006, 54, 9959-9965.	2.4	13
101	Microbial transglutaminase and caseinate as cold set binders: Influence of meat species and chilling storage. LWT - Food Science and Technology, 2006, 39, 692-699.	2.5	42
102	Characteristics of restructured beef steak with different proportions of walnut during frozen storage. Meat Science, 2006, 72, 108-115.	2.7	73
103	Walnut, microbial transglutaminase and chilling storage time effects on salt-free beef batter characteristics. European Food Research and Technology, 2006, 222, 458-466.	1.6	18
104	New Approaches for the Development of Functional Meat Products. Food Additives, 2006, , 275-308.	0.1	3
105	High pressure processing of meat batters with added walnuts. International Journal of Food Science and Technology, 2005, 40, 47-54.	1.3	21
106	Physicochemical properties of low sodium frankfurter with added walnut: effect of transglutaminase combined with caseinate, KCl and dietary fibre as salt replacers. Meat Science, 2005, 69, 781-788.	2.7	150
107	Nutritional profile of restructured beef steak with added walnuts. Meat Science, 2005, 70, 647-654.	2.7	63
108	Biogenic Amines in Meat and Meat Products. Critical Reviews in Food Science and Nutrition, 2005, 44, 489-599.	5.4	323

#	Article	IF	CITATIONS
109	Restructured beef with different proportions of walnut as affected by meat particle size. European Food Research and Technology, 2004, 218, 230-236.	1.6	47
110	Biogenic amine content in Spanish retail market meat products treated with protective atmosphere and high pressure. European Food Research and Technology, 2004, 218, 237-241.	1.6	42
111	Transglutaminase as binding agent in fresh restructured beef steak with added walnuts. Food Chemistry, 2004, 85, 423-429.	4.2	37
112	High-pressure processing of myosystems. Uncertainties in methodology and their consequences for evaluation of results. European Food Research and Technology, 2003, 217, 461-465.	1.6	18
113	Role of cathepsin D activity in gelation of chicken meat heated under pressure. Food Chemistry, 2003, 80, 241-247.	4.2	12
114	Physicochemical and sensory characteristics of restructured beef steak with added walnuts. Meat Science, 2003, 65, 1391-1397.	2.7	78
115	Muscle protein gelation by combined use of high pressure/temperature. Trends in Food Science and Technology, 2002, 13, 22-30.	7.8	90
116	Salt and phosphate effects on the gelling process of pressure/heat treated pork batters. Meat Science, 2002, 61, 15-23.	2.7	72
117	Responses of Pseudomonas fluorescens to combined high pressure/temperature treatments. European Food Research and Technology, 2002, 214, 511-515.	1.6	10
118	Healthier meat and meat products: their role as functional foods. Meat Science, 2001, 59, 5-13.	2.7	466
119	Pressure-assisted gelation of chemically modified poultry meat batters. Food Chemistry, 2001, 75, 203-209.	4.2	13
120	Characteristics of pressurised pork meat batters as affected by addition of plasma proteins, apple fibre and potato starch. Journal of the Science of Food and Agriculture, 2000, 80, 1230-1236.	1.7	20
121	DSC study on the influence of meat source, salt and fat levels, and processing parameters on batters pressurisation. European Food Research and Technology, 2000, 211, 387-392.	1.6	18
122	High pressure/thermal treatment of meat batters prepared from freeze–thawed pork. Meat Science, 2000, 54, 357-364.	2.7	34
123	Relevant factors in strategies for fat reduction in meat products. Trends in Food Science and Technology, 2000, 11, 56-66.	7.8	143
124	Heating of Chicken and Pork Meat Batters under Pressure Conditions:Â Protein Interactions. Journal of Agricultural and Food Chemistry, 1998, 46, 4706-4711.	2.4	45
125	Frozen storage of Bologna sausages as a function of fat content and of levels of added starch and egg white. Meat Science, 1996, 42, 325-332.	2.7	49
126	Binding properties and colour of Bologna sausage made with varying fat levels, protein levels and cooking temperatures. Meat Science, 1995, 41, 301-313.	2.7	70

#	Article	IF	CITATIONS
127	Influence of Thermal Treatment on Gelation of Actomyosin from Different Myosystems. Journal of Food Science, 1994, 59, 211-215.	1.5	19
128	Incorporation of sardine surimi in Bologna sausage containing different fat levels. Meat Science, 1994, 38, 27-37.	2.7	90
129	Ingredient Interaction Effects on Protein Functionality: Mixture Design Approach. Journal of Food Science, 1993, 58, 656-662.	1.5	28
130	Effects of different levels of fat on rheological changes and microstructure of meat batters during heat processing. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1993, 197, 109-113.	0.7	8
131	Rheological changes during thermal gelation of meat batters containing surimi from alaska pollack (Theragra chalcogramma) or sardine (Sardina pilchardus). Journal of the Science of Food and Agriculture, 1992, 59, 117-122.	1.7	11
132	Effect of light on colour and reaction of nitrite in sliced pork bologna under different chilled storage temperatures. Meat Science, 1991, 30, 235-244.	2.7	29
133	Effect of freezing and frozen storage on the aromatic hydrophobicity of pork myosin. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1991, 193, 441-444.	0.7	4
134	Effect of pH and the presence of NaCl on some hydration properties of collagenous material from trout (Salmo irideus Gibb) muscle and skin. Journal of the Science of Food and Agriculture, 1991, 54, 137-146.	1.7	69
135	Changes in protein function of sardines stored in ice with and without added salt. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1990, 190, 195-198.	0.7	11
136	Influence of electrical stimulation on lamb quality during forzen storage. International Journal of Refrigeration, 1989, 12, 164-168.	1.8	0
137	EFFECT OF SEASONAL VARIATIONS ON PROTEIN FUNCTIONAL PROPERTIES OF FISH DURING FROZEN STORAGE. Journal of Food Biochemistry, 1988, 12, 159-170.	1.2	41
138	Influence of low voltage electrical stimulation and rate of chilling on post-mortem glucolysis in lamb. Food Chemistry, 1988, 29, 257-267.	4.2	8
139	Influence of an extract of liver on colour and shelf stability of sliced bologna. Meat Science, 1987, 21, 219-230.	2.7	11
140	Viscosity and emulsifying ability of fish and chicken muscle protein. International Journal of Food Science and Technology, 1985, 20, 31-42.	1.3	51