Brian A Korgel

List of Publications by Citations

Source: https://exaly.com/author-pdf/594730/brian-a-korgel-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

19,818 69 214 137 h-index g-index citations papers 6.85 21,466 223 9.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
214	Control of thickness and orientation of solution-grown silicon nanowires. <i>Science</i> , 2000 , 287, 1471-3	33.3	1369
213	Copper selenide nanocrystals for photothermal therapy. <i>Nano Letters</i> , 2011 , 11, 2560-6	11.5	1047
212	Prospects of nanoscience with nanocrystals. <i>ACS Nano</i> , 2015 , 9, 1012-57	16.7	849
211	Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal "inks" for printable photovoltaics. <i>Journal of the American Chemical Society</i> , 2008 , 130, 16770-7	16.4	831
210	Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. <i>Nano Letters</i> , 2007 , 7, 941-5	11.5	769
209	Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics. <i>Journal of the American Chemical Society</i> , 2009 , 131, 12554-5	16.4	594
208	In situ TEM of two-phase lithiation of amorphous silicon nanospheres. <i>Nano Letters</i> , 2013 , 13, 758-64	11.5	573
207	Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano, 2010, 4, 1443-50	16.7	446
206	Assembly and Self-Organization of Silver Nanocrystal Superlattices: Ordered Boft Spheres Journal of Physical Chemistry B, 1998 , 102, 8379-8388	3.4	431
205	Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. <i>Journal of the American Chemical Society</i> , 2003 , 125, 16050-7	16.4	399
204	The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. <i>Langmuir</i> , 2008 , 24, 644-9	4	329
203	Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor. <i>Journal of the American Chemical Society</i> , 2003 , 125, 5638-9	16.4	296
202	Size Tunable Visible Luminescence from Individual Organic Monolayer Stabilized Silicon Nanocrystal Quantum Dots. <i>Nano Letters</i> , 2002 , 2, 681-685	11.5	292
201	Synthesis of Ligand-Stabilized Silicon Nanocrystals with Size-Dependent Photoluminescence Spanning Visible to Near-Infrared Wavelengths. <i>Chemistry of Materials</i> , 2012 , 24, 393-401	9.6	286
200	General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 8538-42	3.4	285
199	Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals. <i>Journal of the American Chemical Society</i> , 2002 , 124, 1424-9	16.4	259
198	Silicon nanowire fabric as a lithium ion battery electrode material. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20914-21	16.4	230

197	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981	16.7	222
196	Solventless Synthesis of Nickel Sulfide Nanorods and Triangular Nanoprisms. <i>Nano Letters</i> , 2004 , 4, 537	-5425	211
195	Synthesis and magnetic properties of silica-coated FePt nanocrystals. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 11160-6	3.4	195
194	Chemical surface passivation of Ge nanowires. <i>Journal of the American Chemical Society</i> , 2004 , 126, 154	6 <u>6</u> 67. 2	190
193	Synthesis of organic monolayer-stabilized copper nanocrystals in supercritical water. <i>Journal of the American Chemical Society</i> , 2001 , 123, 7797-803	16.4	187
192	Solventless Synthesis of Bi2S3 (Bismuthinite) Nanorods, Nanowires, and Nanofabric. <i>Chemistry of Materials</i> , 2005 , 17, 1655-1660	9.6	184
191	Hydrophobic gold nanoparticle self-assembly with phosphatidylcholine lipid: membrane-loaded and janus vesicles. <i>Nano Letters</i> , 2010 , 10, 3733-9	11.5	173
190	Lithium ion battery peformance of silicon nanowires with carbon skin. ACS Nano, 2014, 8, 915-22	16.7	165
189	Solution-grown germanium nanowire anodes for lithium-ion batteries. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2012 , 4, 4658-64	9.5	165
188	Small-angle x-ray-scattering study of silver-nanocrystal disorder-order phase transitions. <i>Physical Review B</i> , 1999 , 59, 14191-14201	3.3	159
187	Nanocrystal and Nanowire Synthesis and Dispersibility in Supercritical Fluids. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 9574-9587	3.4	158
186	Solution-liquid-solid (SLS) growth of silicon nanowires. <i>Journal of the American Chemical Society</i> , 2008 , 130, 5436-7	16.4	156
185	General Synthesis and Gas-Sensing Properties of Multiple-Shell Metal Oxide Hollow Microspheres. <i>Angewandte Chemie</i> , 2011 , 123, 2790-2793	3.6	142
184	Columnar self-assembly of colloidal nanodisks. <i>Nano Letters</i> , 2006 , 6, 2959-63	11.5	142
183	Lamellar Twinning in Semiconductor Nanowires. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 2929-2935	3.8	139
182	Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region. <i>Nature Communications</i> , 2013 , 4, 1904	17.4	135
181	Copper-Coated Amorphous Silicon Particles as an Anode Material for Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2012 , 24, 1306-1315	9.6	131
180	Self-assembled simple hexagonal AB(2) binary nanocrystal superlattices: SEM, GISAXS, and defects. Journal of the American Chemical Society, 2009 , 131, 3281-90	16.4	131

179	Labeling tumor cells with fluorescent nanocrystal-aptamer bioconjugates. <i>Biosensors and Bioelectronics</i> , 2006 , 21, 1859-66	11.8	131
178	Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate. <i>Nano Letters</i> , 2003 , 3, 93-99	11.5	129
177	Condensation of Ordered Nanocrystal Thin Films. <i>Physical Review Letters</i> , 1998 , 80, 3531-3534	7.4	128
176	Opto-thermoelectric nanotweezers. <i>Nature Photonics</i> , 2018 , 12, 195-201	33.9	127
175	Influence of surface states on electron transport through intrinsic Ge nanowires. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 5518-24	3.4	127
174	Alkyl passivation and amphiphilic polymer coating of silicon nanocrystals for diagnostic imaging. <i>Small</i> , 2010 , 6, 2026-34	11	125
173	Spray-deposited CuInSe2 nanocrystal photovoltaics. <i>Energy and Environmental Science</i> , 2010 , 3, 1600	35.4	122
172	CuinSe2 Quantum Dot Solar Cells with High Open-Circuit Voltage. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 2030-4	6.4	118
171	Synthesis of high aspect ratio quantum-size CdS nanorods and their surface-dependent photoluminescence. <i>Langmuir</i> , 2008 , 24, 9043-9	4	117
170	Synthesis and Characterization of Dilute Magnetic Semiconductor Manganese-Doped Indium Arsenide Nanocrystals. <i>Nano Letters</i> , 2003 , 3, 1441-1447	11.5	116
169	Wurtzite Chalcopyrite Polytypism in CuInS2 Nanodisks. <i>Chemistry of Materials</i> , 2009 , 21, 1962-1966	9.6	115
168	Germanium as a Sodium Ion Battery Material: In Situ TEM Reveals Fast Sodiation Kinetics with High Capacity. <i>Chemistry of Materials</i> , 2016 , 28, 1236-1242	9.6	114
167	Synthesis of Cadmium Sulfide Q Particles in Water-in-CO2Microemulsions. <i>Langmuir</i> , 1999 , 15, 6613-66	154	112
166	Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics. <i>Journal of Solid State Chemistry</i> , 2012 , 189, 2-12	3.3	109
165	Self-Assembled Honeycomb Networks of Gold Nanocrystals. <i>Nano Letters</i> , 2001 , 1, 595-600	11.5	109
164	Synthesis of Germanium Nanocrystals in High Temperature Supercritical Fluid Solvents. <i>Nano Letters</i> , 2004 , 4, 969-974	11.5	102
163	Pyrite Nanocrystal Solar Cells: Promising, or Fool's Gold?. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2352-6	6.4	99
162	Carbon nanotube synthesis in supercritical toluene. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4951-7	16.4	98

161	Tin-Seeded Silicon Nanowires for High Capacity Li-Ion Batteries. <i>Chemistry of Materials</i> , 2012 , 24, 3738-	33,45	97
160	High yield solution-liquid-solid synthesis of germanium nanowires. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15718-9	16.4	97
159	In vivo whole animal fluorescence imaging of a microparticle-based oral vaccine containing (CuInSe(x)S(2-x))/ZnS core/shell quantum dots. <i>Nano Letters</i> , 2013 , 13, 4294-8	11.5	95
158	Metal nanocrystal superlattice nucleation and growth. <i>Langmuir</i> , 2004 , 20, 978-83	4	95
157	Raman Spectroscopy of Oxide-Embedded and Ligand-Stabilized Silicon Nanocrystals. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1089-93	6.4	93
156	Flexible germanium nanowires: ideal strength, room temperature plasticity, and bendable semiconductor fabric. <i>ACS Nano</i> , 2010 , 4, 2356-62	16.7	93
155	Germanium Nanowire Synthesis: An Example of Solid-Phase Seeded Growth with Nickel Nanocrystals. <i>Chemistry of Materials</i> , 2005 , 17, 5705-5711	9.6	93
154	Growth Kinetics and Metastability of Monodisperse Tetraoctylammonium Bromide Capped Gold Nanocrystals. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 193-199	3.4	92
153	High Yield of Germanium Nanocrystals Synthesized from Germanium Diiodide in Solution. <i>Chemistry of Materials</i> , 2005 , 17, 6479-6485	9.6	90
152	Catalytic solid-phase seeding of silicon nanowires by nickel nanocrystals in organic solvents. <i>Nano Letters</i> , 2005 , 5, 681-4	11.5	84
151	Electrochemical Lithiation of Graphene-Supported Silicon and Germanium for Rechargeable Batteries. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 11917-11923	3.8	83
150	Bismuth Nanocrystal-Seeded III-V Semiconductor Nanowire Synthesis. <i>Crystal Growth and Design</i> , 2005 , 5, 1971-1976	3.5	82
149	Size-Dependent Photoluminescence Efficiency of Silicon Nanocrystal Quantum Dots. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 23240-23248	3.8	78
148	Room temperature hydrosilylation of silicon nanocrystals with bifunctional terminal alkenes. <i>Langmuir</i> , 2013 , 29, 1533-40	4	76
147	Multiexciton Solar Cells of CuInSe2 Nanocrystals. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 304-9	6.4	73
146	Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries. Journal of Physical Chemistry C, 2012 , 116, 18079-18086	3.8	71
145	Creating polymer hydrogel microfibres with internal alignment via electrical and mechanical stretching. <i>Biomaterials</i> , 2014 , 35, 3243-51	15.6	69
144	Supercritical FluidLiquidBolid Synthesis of Gallium Phosphide Nanowires. <i>Chemistry of Materials</i> , 2005 , 17, 230-233	9.6	69

143	Space charge limited currents and trap concentrations in GaAs nanowires. <i>Nanotechnology</i> , 2006 , 17, 2681-2688	3.4	69
142	The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2406-12	6.4	67
141	Limitations on the optical tunability of small diameter gold nanoshells. <i>Langmuir</i> , 2009 , 25, 11777-85	4	67
140	The role of precursor-decomposition kinetics in silicon-nanowire synthesis in organic solvents. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 3573-7	16.4	67
139	Thickness-limited performance of CuInSelhanocrystal photovoltaic devices. <i>Optics Express</i> , 2010 , 18 Suppl 3, A411-20	3.3	66
138	Seeded germanium nanowire synthesis in solution. <i>Journal of Materials Chemistry</i> , 2009 , 19, 996		65
137	Synthesis of amorphous silicon colloids by trisilane thermolysis in high temperature supercritical solvents. <i>Langmuir</i> , 2004 , 20, 6546-8	4	65
136	Graphene-Supported High-Resolution TEM and STEM Imaging of Silicon Nanocrystals and their Capping Ligands. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 22463-22468	3.8	64
135	Nanocrystal photovoltaics: a review of recent progress. <i>Current Opinion in Chemical Engineering</i> , 2013 , 2, 160-167	5.4	63
134	Nanocrystals for electronics. <i>Annual Review of Chemical and Biomolecular Engineering</i> , 2012 , 3, 287-311	8.9	62
133	High capacity lithium ion battery anodes of silicon and germanium. <i>Current Opinion in Chemical Engineering</i> , 2013 , 2, 286-293	5.4	60
132	Time-Resolved Small-Angle X-ray Scattering Studies of Nanocrystal Superlattice Self-Assembly. Journal of the American Chemical Society, 1998 , 120, 2969-2970	16.4	60
131	Strongly birefringent pb3o2cl2 nanobelts. <i>Journal of the American Chemical Society</i> , 2005 , 127, 10089-9	516.4	59
130	Inverse Opal Nanocrystal Superlattice Films. <i>Nano Letters</i> , 2004 , 4, 1943-1948	11.5	58
129	Multifunctional Particles: Magnetic Nanocrystals and Gold Nanorods Coated with Fluorescent Dye-Doped Silica Shells. <i>Journal of Solid State Chemistry</i> , 2008 , 181, 1590-1599	3.3	56
128	Melting and Sintering of a Body-Centered Cubic Superlattice of PbSe Nanocrystals Followed by Small Angle X-ray Scattering. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 6397-6404	3.8	55
127	A Tips and Tricks Practical Guide to the Synthesis of Metal Halide Perovskite Nanocrystals. <i>Chemistry of Materials</i> , 2020 , 32, 5410-5423	9.6	54
126	Tunable Resonance Coupling in Single Si Nanoparticle-Monolayer WS Structures. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 16690-16697	9.5	54

125	Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	54
124	Nanocrystal-mediated crystallization of silicon and germanium nanowires in organic solvents: the role of catalysis and solid-phase seeding. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 5184-7	16.4	54
123	Reversible solvent vapor-mediated phase changes in nanocrystal superlattices. ACS Nano, 2011, 5, 2419	- 26 .7	53
122	Photoluminescence quenching of silicon nanoparticles in phospholipid vesicle bilayers. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2003 , 158, 111-117	4.7	53
121	Hydrogenated Amorphous Silicon (a-Si:H) Colloids. <i>Chemistry of Materials</i> , 2010 , 22, 6378-6383	9.6	52
120	Importance of Solvent-Mediated Phenylsilane Decompositon Kinetics for High-Yield Solution-Phase Silicon Nanowire Synthesis. <i>Chemistry of Materials</i> , 2008 , 20, 1239-1241	9.6	51
119	Twin-Related Branching of Solution-Grown ZnSe Nanowires. <i>Chemistry of Materials</i> , 2007 , 19, 4943-4948	3 9.6	51
118	Challenges in quantum dot-neuron active interfacing. <i>Talanta</i> , 2005 , 67, 462-71	6.2	50
117	Silicon Nanocrystals Functionalized with Pyrene Units: Efficient Light-Harvesting Antennae with Bright Near-Infrared Emission. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3325-9	6.4	49
116	GISAXS Characterization of Order in Hexagonal Monolayers of FePt Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 14427-14432	3.8	49
115	Colloidal luminescent silicon nanorods. <i>Nano Letters</i> , 2013 , 13, 3101-5	11.5	48
114	Corrosion Resistance of Thiol- and Alkene-Passivated Germanium Nanowires. <i>Chemistry of Materials</i> , 2010 , 22, 3698-3703	9.6	48
113	Colloidal silicon nanorod synthesis. <i>Nano Letters</i> , 2009 , 9, 3042-7	11.5	48
112	Ordered structure rearrangements in heated gold nanocrystal superlattices. <i>Nano Letters</i> , 2013 , 13, 571	1 Q 145	47
111	Copper indium gallium selenide (CIGS) photovoltaic devices made using multistep selenization of nanocrystal films. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 9134-40	9.5	47
110	Colloidal Synthesis of Germanium Nanorods. <i>Chemistry of Materials</i> , 2011 , 23, 1964-1970	9.6	46
109	Second Virial Coefficient Measurements of Dilute Gold Nanocrystal Dispersions Using Small-Angle X-ray Scattering. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 16732-16738	3.4	46
108	Flexible CuinSe2 Nanocrystal Solar Cells on Paper. ACS Energy Letters, 2017, 2, 574-581	20.1	45

107	Synthesis and Ligand Exchange of Thiol-Capped Silicon Nanocrystals. <i>Langmuir</i> , 2015 , 31, 6886-93	4	45
106	Young Modulus and Size-Dependent Mechanical Quality Factor of Nanoelectromechanical Germanium Nanowire Resonators. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 10725-10729	3.8	45
105	Enhanced Open-Circuit Voltage of Wide-Bandgap Perovskite Photovoltaics by Using Alloyed (FA1\(\text{LCsx} \) Pb(I1\(\text{LBrx} \)) 3 Quantum Dots. ACS Energy Letters, 2019 , 4, 1954-1960	20.1	44
104	Silicon Nanowires and Silica Nanotubes Seeded by Copper Nanoparticles in an Organic Solvent. <i>Chemistry of Materials</i> , 2008 , 20, 2306-2313	9.6	42
103	All-optical reconfigurable chiral meta-molecules. <i>Materials Today</i> , 2019 , 25, 10-20	21.8	40
102	Melting TransitionIbf a Quantum Dot Solid: Collective Interactions Influence the Thermally-Induced OrderDisorder Transition of a Silver Nanocrystal Superlattice. <i>Journal of the American Chemical Society</i> , 1999 , 121, 3533-3534	16.4	40
101	Colloidal magnetic nanocrystals: synthesis, properties and applications. <i>Annual Reports on the Progress of Chemistry Section C</i> , 2007 , 103, 351		38
100	Kinetics of Nonequilibrium Nanocrystal Monolayer Formation: Deposition from Liquid Carbon Dioxide. <i>Nano Letters</i> , 2003 , 3, 1671-1675	11.5	37
99	Surface Science and Colloidal Stability of Double-Perovskite Cs2AgBiBr6 Nanocrystals and Their Superlattices. <i>Chemistry of Materials</i> , 2019 , 31, 7962-7969	9.6	36
98	Stacking of hexagonal nanocrystal layers during Langmuir-Blodgett deposition. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 6017-26	3.4	36
97	In Situ TEM Observations of Sn-Containing Silicon Nanowires Undergoing Reversible Pore Formation Due to Fast Lithiation/Delithiation Kinetics. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 2188	9- 2 189	535
96	High Yield Multiwall Carbon Nanotube Synthesis in Supercritical Fluids. <i>Chemistry of Materials</i> , 2006 , 18, 3356-3364	9.6	35
95	Self-Assembly and Thermal Stability of Binary Superlattices of Gold and Silicon Nanocrystals. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4,	6.4	32
94	Materials science. Nanosprings take shape. <i>Science</i> , 2005 , 309, 1683-4	33.3	32
93	Electrorheological analysis of nano laden suspensions. <i>Journal of Colloid and Interface Science</i> , 2006 , 297, 618-24	9.3	32
92	Efficient Carrier Multiplication in Colloidal CuinSe2 Nanocrystals. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3169-74	6.4	31
91	Influence of composition on the performance of sintered Cu(In,Ga)Se2 nanocrystal thin-film photovoltaic devices. <i>ChemSusChem</i> , 2013 , 6, 481-6	8.3	31
90	Nanocrystal superlattices that exhibit improved order on heating: an example of inverse melting?. <i>Faraday Discussions</i> , 2015 , 181, 181-92	3.6	30

(2015-2011)

89	Rapid SFLS Synthesis of Si Nanowires Using Trisilane with In situ Alkyl-Amine Passivation. <i>Chemistry of Materials</i> , 2011 , 23, 2697-2699	9.6	29
88	Synthesis of germanium nanocrystals in high temperature supercritical CO(2). <i>Nanotechnology</i> , 2005 , 16, S389-94	3.4	29
87	Temperature dependence of the field effect mobility of solution-grown germanium nanowires. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 6816-23	3.4	29
86	Solvent Density-Dependent Steric Stabilization of Perfluoropolyether-Coated Nanocrystals in Supercritical Carbon Dioxide. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 15969-15975	3.4	29
85	Orientationally Ordered Silicon Nanocrystal Cuboctahedra in Superlattices. <i>Nano Letters</i> , 2016 , 16, 781	4 1 718 3 21	28
84	Nanomaterials Developments for Higher-Performance Lithium Ion Batteries. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 749-50	6.4	27
83	A single-step reaction for silicon and germanium nanorods. <i>Chemistry - A European Journal</i> , 2014 , 20, 5874-9	4.8	27
82	Materials science. Self-assembled nanocoils. <i>Science</i> , 2004 , 303, 1308-9	33.3	27
81	Silicon-Based Dielectric Metamaterials: Focus on the Current Synthetic Challenges. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 4478-4498	16.4	27
80	Silicon nanocrystal superlattices. <i>ChemPhysChem</i> , 2013 , 14, 84-7	3.2	25
79			
17	Efficient Carrier Multiplication in Colloidal Silicon Nanorods. <i>Nano Letters</i> , 2017 , 17, 5580-5586	11.5	25
78	Efficient Carrier Multiplication in Colloidal Silicon Nanorods. <i>Nano Letters</i> , 2017 , 17, 5580-5586 A Comprehensive Study of Electron Energy Losses in Ge Nanowires. <i>Nano Letters</i> , 2004 , 4, 1455-1461	11.5	
78	A Comprehensive Study of Electron Energy Losses in Ge Nanowires. <i>Nano Letters</i> , 2004 , 4, 1455-1461 Low Temperature Colloidal Synthesis of Silicon Nanorods from Isotetrasilane, Neopentasilane, and	11.5	25
78 77	A Comprehensive Study of Electron Energy Losses in Ge Nanowires. <i>Nano Letters</i> , 2004 , 4, 1455-1461 Low Temperature Colloidal Synthesis of Silicon Nanorods from Isotetrasilane, Neopentasilane, and Cyclohexasilane. <i>Chemistry of Materials</i> , 2015 , 27, 6053-6058 Light-harvesting antennae based on photoactive silicon nanocrystals functionalized with porphyrin	9.6 3.6	25
78 77 76	A Comprehensive Study of Electron Energy Losses in Ge Nanowires. <i>Nano Letters</i> , 2004 , 4, 1455-1461 Low Temperature Colloidal Synthesis of Silicon Nanorods from Isotetrasilane, Neopentasilane, and Cyclohexasilane. <i>Chemistry of Materials</i> , 2015 , 27, 6053-6058 Light-harvesting antennae based on photoactive silicon nanocrystals functionalized with porphyrin chromophores. <i>Faraday Discussions</i> , 2015 , 185, 481-95	9.6 3.6	25 24 24
78 77 76 75	A Comprehensive Study of Electron Energy Losses in Ge Nanowires. <i>Nano Letters</i> , 2004 , 4, 1455-1461 Low Temperature Colloidal Synthesis of Silicon Nanorods from Isotetrasilane, Neopentasilane, and Cyclohexasilane. <i>Chemistry of Materials</i> , 2015 , 27, 6053-6058 Light-harvesting antennae based on photoactive silicon nanocrystals functionalized with porphyrin chromophores. <i>Faraday Discussions</i> , 2015 , 185, 481-95 Molecular optical imaging of therapeutic targets of cancer. <i>Advances in Cancer Research</i> , 2007 , 96, 299-Chloroform-enhanced incorporation of hydrophobic gold nanocrystals into	9.6 3.6	25 24 24 24

71	Enhanced Nickel-Seeded Synthesis of Germanium Nanowires. <i>Chemistry of Materials</i> , 2013 , 25, 2172-21	73 .6	22
70	An All-Inorganic Colloidal Nanocrystal Flexible Polarizer. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8730-8735	16.4	21
69	Optical Properties of Silicon and Germanium Nanowire Fabric. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 22486-22491	3.8	21
68	Structure P roperties Correlation in Si Nanoparticles by Total Scattering and Computer Simulations. <i>Chemistry of Materials</i> , 2013 , 25, 2365-2371	9.6	21
67	Tunable Chiral Optics in All-Solid-Phase Reconfigurable Dielectric Nanostructures. <i>Nano Letters</i> , 2021 , 21, 973-979	11.5	21
66	Role of Halides in the Ordered Structure Transitions of Heated Gold Nanocrystal Superlattices. <i>Langmuir</i> , 2015 , 31, 6924-32	4	20
65	Thermal Stability of the Black Perovskite Phase in Cesium Lead Iodide Nanocrystals Under Humid Conditions. <i>Chemistry of Materials</i> , 2019 , 31, 9750-9758	9.6	20
64	Antiferromagnetic Single Domain L12 FePt3 Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 2512-2518	3.8	20
63	Mapping spatial heterogeneity in Cu(In(1-x)Ga(x))Se2 nanocrystal-based photovoltaics with scanning photocurrent and fluorescence microscopy. <i>Small</i> , 2010 , 6, 2832-6	11	20
62	Germanium nanowire transistors with ethylene glycol treated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) contacts. <i>Applied Physics Letters</i> , 2007 , 90, 072106	3.4	20
61	Nonequilibrium phase behavior during the random sequential adsorption of tethered hard disks. <i>Physical Review Letters</i> , 2000 , 85, 4430-3	7.4	20
60	Development of wide bandgap perovskites for next-generation low-cost CdTe tandem solar cells. <i>Chemical Engineering Science</i> , 2019 , 199, 388-397	4.4	19
59	Spectrally tunable infrared plasmonic F,Sn:InO nanocrystal cubes. <i>Journal of Chemical Physics</i> , 2020 , 152, 014709	3.9	19
58	Gold seed removal from the tips of silicon nanorods. <i>Nano Letters</i> , 2010 , 10, 176-80	11.5	18
57	PEGylation of carboxylic acid-functionalized germanium nanowires. <i>Langmuir</i> , 2010 , 26, 14241-6	4	18
56	Bright long-lived luminescence of silicon nanocrystals sensitized by two-photon absorbing antenna. <i>CheM</i> , 2017 , 2, 550-560	16.2	17
55	Enhancing the lithiation rate of silicon nanowires by the inclusion of tin. RSC Advances, 2014, 4, 42022-4	12,072.8	17
54	Rotational and translational diffusivities of germanium nanowires. <i>Rheologica Acta</i> , 2009 , 48, 589-596	2.3	17

53	Suppressing material loss in the visible and near-infrared range for functional nanophotonics using bandgap engineering. <i>Nature Communications</i> , 2020 , 11, 5055	17.4	17	
52	Optical nanomanipulation on solid substrates via optothermally-gated photon nudging. <i>Nature Communications</i> , 2019 , 10, 5672	17.4	17	
51	Pervasive Cation Vacancies and Antisite Defects in Copper Indium Diselenide (CuInSe2) Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 9544-9551	3.8	16	
50	Correlated Membrane Fluctuations in Nanocrystal Superlattices. <i>Physical Review Letters</i> , 2001 , 86, 127-	13.04	16	
49	Controlled Styrene Monolayer Capping of Silicon Nanocrystals by Room Temperature Hydrosilylation. <i>Langmuir</i> , 2015 , 31, 6532-7	4	15	
48	Simultaneous Tunable Selection and Self-Assembly of Si Nanowires from Heterogeneous Feedstock. <i>ACS Nano</i> , 2016 , 10, 4384-94	16.7	15	
47	Semiconductor nanowires: A chemical engineering perspective. <i>AICHE Journal</i> , 2009 , 55, 842-848	3.6	15	
46	Bismuth Enhances the Stability of CH3NH3PbI3 (MAPI) Perovskite under High Humidity. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 963-970	3.8	15	
45	Thermal Phase Transitions in Superlattice Assemblies of Cuboidal CH3NH3PbI3 Nanocrystals Followed by Grazing Incidence X-ray Scattering. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 17555-1756.	5 ^{3.8}	14	
44	In Situ Transmission Electron Microsopy of Oxide Shell-Induced Pore Formation in (De)lithiated Silicon Nanowires. <i>ACS Energy Letters</i> , 2018 , 3, 2829-2834	20.1	14	
43	Application of Aberration-Corrected TEM and Image Simulation to Nanoelectronics and Nanotechnology. <i>IEEE Transactions on Semiconductor Manufacturing</i> , 2006 , 19, 391-396	2.6	13	
42	Precision synthesis of silicon nanowires with crystalline core and amorphous shell. <i>Dalton Transactions</i> , 2013 , 42, 12675-80	4.3	12	
41	Optical Properties of Solvent-Dispersed and Polymer-Embedded Germanium Nanowires. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 20983-20989	3.8	12	
40	Colloidal Silicontermanium Nanorod Heterostructures. <i>Chemistry of Materials</i> , 2017 , 29, 9786-9792	9.6	11	
39	Cooling Dodecanethiol-Capped 2 nm Diameter Gold Nanocrystal Superlattices below Room Temperature Induces a Reversible Order Disorder Structure Transition. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 27682-27687	3.8	11	
38	Facile Exchange of Tightly Bonded L-Type Oleylamine and Diphenylphosphine Ligands on Copper Indium Diselenide Nanocrystals Mediated by Molecular Iodine. <i>Chemistry of Materials</i> , 2018 , 30, 8359-8	3 <i>87</i>	11	
37	Plastic Microgroove Solar Cells Using CuInSe2 Nanocrystals. ACS Energy Letters, 2016, 1, 1021-1027	20.1	10	
36	Highly Fluorescent Silicon Nanocrystals Stabilized in Water Using Quatsomes. <i>Langmuir</i> , 2017 , 33, 1436	6 ₄ 1437	'7 10	

35	Light-Harvesting Antennae Based on Silicon Nanocrystals. <i>Topics in Current Chemistry</i> , 2016 , 374, 53	7.2	10
34	Predictive Modeling of CuInSe2 Nanocrystal Photovoltaics: The Importance of Band Alignment and Carrier Diffusion. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1494-1504	6.1	10
33	Measurement of Two-Photon Absorption of Silicon Nanocrystals in Colloidal Suspension for Bio-Imaging Applications. <i>Physica Status Solidi (B): Basic Research</i> , 2018 , 255, 1700501	1.3	9
32	Size Dependent Pore Formation in Germanium Nanowires Undergoing Reversible Delithiation Observed by In Situ TEM. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 28825-28831	3.8	9
31	Germanium Nanorod Extinction Spectra: Discrete Dipole Approximation Calculations and Experiment. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 22625-22630	3.8	8
30	Transient Lattice Response upon Photoexcitation in CuInSe Nanocrystals with Organic or Inorganic Surface Passivation. <i>ACS Nano</i> , 2020 , 14, 13548-13556	16.7	8
29	Temperature-dependent charge transport in copper indium diselenide nanocrystal films. <i>Journal of Applied Physics</i> , 2012 , 111, 073703	2.5	7
28	Addition of Monovalent Silver Cations to CH3NH3PbBr3 Produces Crystallographically Oriented Perovskite Thin Films. <i>ACS Applied Energy Materials</i> , 2019 , 2, 6087-6096	6.1	6
27	CuGaSe2 and CuInxGa1\(\mathbb{Z}\)Se2 Nanocrystals with Sphalerite or Wurtzite Phase for Optoelectronic Applications. ACS Applied Nano Materials, 2019 , 2, 4673-4680	5.6	6
26	Scalable colloidal synthesis of Bi2Te2.7Se0.3 plate-like particles give access to a high-performing n-type thermoelectric material for low temperature application. <i>Nanoscale Advances</i> , 2020 , 2, 5699-570	9 ^{5.1}	6
25	Silicon Nanocrystal Superlattice Nucleation and Growth. <i>Langmuir</i> , 2017 , 33, 13068-13076	4	5
24	Effect of Nonincorporative Cations on the Size and Shape of Indium Oxide Nanocrystals. <i>Chemistry of Materials</i> , 2020 , 32, 9347-9354	9.6	5
23	Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres. <i>Advanced Materials</i> , 2021 , 33, e2007236	24	5
22	Interface Passivation and Trap Reduction via a Solution-Based Method for Near-Zero Hysteresis Nanowire Field-Effect Transistors. <i>ACS Applied Materials & Description of the Property of the Passivation and Trap Reduction via a Solution-Based Method for Near-Zero Hysteresis Nanowire Field-Effect Transistors. ACS Applied Materials & Description (1988) 1988 1989 1989 1989 1989 1989 1989</i>	9.5	4
21	Bubble Assemblies of Nanocrystals: Superlattices without a Substrate. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 4865-4871	6.4	4
20	Electrostatic charging and manipulation of semiconductor nanowires. <i>Journal of Materials Research</i> , 2011 , 26, 2305-2310	2.5	4
19	Deliquescent Chromism of Nickel(II) Iodide Thin Films. <i>Langmuir</i> , 2019 , 35, 2146-2152	4	4
18	Uniform Selenization of Crack-Free Films of Cu(In,Ga)Se2 Nanocrystals. <i>ACS Applied Energy Materials</i> , 2019 , 2, 736-742	6.1	4

LIST OF PUBLICATIONS

17	A simplified synthesis of silica Colloids with tunable hydrophobicity. <i>Colloid and Polymer Science</i> , 2017 , 295, 925-932	2.4	3
16	Mechanical properties of hydrogenated amorphous silicon (a-Si:H) particles. <i>Journal of Applied Physics</i> , 2019 , 126, 204303	2.5	3
15	Compositional Fluctuations Mediated by Excess Tellurium in Bismuth Antimony Telluride Nanocomposites Yield High Thermoelectric Performance. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 20184-20194	3.8	3
14	Novel nanocrystals as a platinum-delivery vehicle for chemotherapy. <i>Nanomedicine</i> , 2007 , 2, 943-9	5.6	2
13	Wet Chemical Synthesis of Germanium Nanocrystals. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 879, 1		2
12	Photonic Lift-off Process to Fabricate Ultrathin Flexible Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 44549-44555	9.5	2
11	Room-temperature Observation of Near-intrinsic Exciton Linewidth in Monolayer WS <i>Advanced Materials</i> , 2022 , e2108721	24	2
10	Photonic curing of ligand-capped CuInSe2 nanocrystal films 2014 ,		1
9	Supercritical FluidLiquidBolid (SFLS) Growth of Semiconductor Nanowires 2013 , 41-63		1
8	Optimization of Quantum DotNerve Cell Interfaces. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 789, 318		1
7	Artificial Atoms of Silicon. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 582, 62		1
6	Broadband Forward Light Scattering by Architectural Design of CoreBhell Silicon Particles. <i>Advanced Functional Materials</i> , 2021 , 31, 2100915	15.6	1
5	Dielectric Nanospheres: Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres (Adv. Mater. 20/2021). <i>Advanced Materials</i> , 2021 , 33, 2170153	24	O
4	Synthesis of TlBr and Tl2AgBr3 Nanocrystals. <i>ChemNanoMat</i> , 2020 , 6, 790-796	3.5	
3	Herausforderungen bei der Synthese siliciumbasierter dielektrischer Metamaterialien. <i>Angewandte Chemie</i> , 2018 , 130, 4568-4589	3.6	
2	Single Particle and Ensemble Spectroscopy of Silicon Nanoparticles. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 704, 341		
1	Room-Temperature Observation of Near-Intrinsic Exciton Linewidth in Monolayer WS 2 (Adv. Mater. 15/2022). <i>Advanced Materials</i> , 2022 , 34, 2270115	24	