Kamil Kaminski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5947126/publications.pdf

Version: 2024-02-01

501174 567247 41 835 15 28 citations h-index g-index papers 41 41 41 1180 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	pH-Sensitive Genipin-Cross-Linked Chitosan Microspheres For Heparin Removal. Biomacromolecules, 2008, 9, 3127-3132.	5.4	79
2	Hydrogel bacterial cellulose: a path to improved materials for new eco-friendly textiles. Cellulose, 2020, 27, 5353-5365.	4.9	79
3	HTCC: Broad Range Inhibitor of Coronavirus Entry. PLoS ONE, 2016, 11, e0156552.	2.5	67
4	Novel polymeric inhibitors of HCoV-NL63. Antiviral Research, 2013, 97, 112-121.	4.1	66
5	Chitosan Derivatives as Novel Potential Heparin Reversal Agents. Journal of Medicinal Chemistry, 2010, 53, 4141-4147.	6.4	52
6	Cationic Derivatives of Dextran and Hydroxypropylcellulose as Novel Potential Heparin Antagonists. Journal of Medicinal Chemistry, 2011, 54, 6586-6596.	6.4	45
7	Biopolymeric hydrogels â^' nanostructured TiO2 hybrid materials as potential injectable scaffolds for bone regeneration. Colloids and Surfaces B: Biointerfaces, 2016, 148, 607-614.	5.0	41
8	Self-organized thermo-responsive hydroxypropyl cellulose nanoparticles for curcumin delivery. European Polymer Journal, 2013, 49, 2485-2494.	5.4	38
9	Cationic derivative of dextran reverses anticoagulant activity of unfractionated heparin in animal models of arterial and venous thrombosis. European Journal of Pharmacology, 2012, 686, 81-89.	3.5	35
10	Nonclinical Evaluation of Novel Cationically Modified Polysaccharide Antidotes for Unfractionated Heparin. PLoS ONE, 2015, 10, e0119486.	2.5	28
11	Cellular delivery and enhanced anticancer activity of berberine complexed with a cationic derivative of γ–cyclodextrin. Bioorganic and Medicinal Chemistry, 2019, 27, 1414-1420.	3.0	21
12	Heparin-binding copolymer reverses effects of unfractionated heparin, enoxaparin, and fondaparinux in rats and mice. Translational Research, 2016, 177, 98-112.e10.	5.0	20
13	Silicone-stabilized liposomes as a possible novel nanostructural drug carrier. Colloids and Surfaces B: Biointerfaces, 2016, 143, 359-370.	5.0	19
14	Addressing the Osteoporosis Problemâ€"Multifunctional Injectable Hybrid Materials for Controlling Local Bone Tissue Remodeling. ACS Applied Materials & Interfaces, 2021, 13, 49762-49779.	8.0	18
15	The Toxicokinetic Profile of Dex40-GTMAC3—a Novel Polysaccharide Candidate for Reversal of Unfractionated Heparin. Frontiers in Pharmacology, 2016, 7, 60.	3.5	17
16	Uptake and in vitro anticancer activity of oleic acid delivered in nanocapsules stabilized by amphiphilic derivatives of hyaluronic acid and chitosan. International Journal of Biological Macromolecules, 2020, 164, 2000-2009.	7. 5	17
17	Anticoagulant Properties of Poly(sodium 2-(acrylamido)-2-methylpropanesulfonate)-Based Di- and Triblock Polymers. Biomacromolecules, 2018, 19, 3104-3118.	5.4	16
18	Inactivation of Heparin by Cationically Modified Chitosan. Marine Drugs, 2014, 12, 3953-3969.	4.6	14

#	Article	IF	CITATIONS
19	New arginine substituted derivative of poly(allylamine hydrochloride) for heparin reversal. MedChemComm, 2014, 5, 489.	3.4	14
20	Hyaluronic Acid-Based Nanocapsules as Efficient Delivery Systems of Garlic Oil Active Components with Anticancer Activity. Nanomaterials, 2021, 11, 1354.	4.1	13
21	Enhanced delivery of daidzein into fibroblasts and neuronal cells with cationic derivatives of gamma-cyclodextrin for the control of cellular glycosaminoglycans. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 91, 111-119.	4.3	12
22	Novel bioelectrodes based on polysaccharide modified gold surfaces and electrochemically active Lactobacillus rhamnosus GG biofilms. Electrochimica Acta, 2019, 296, 999-1008.	5.2	12
23	Pioglitazone-Loaded Nanostructured Hybrid Material for Skin Ulcer Treatment. Materials, 2020, 13, 2050.	2.9	11
24	Heparin-Binding Copolymer as a Complete Antidote for Low-Molecular-Weight Heparins in Rats. Journal of Pharmacology and Experimental Therapeutics, 2020, 373, 51-61.	2.5	10
25	Murine cellular model of mucopolysaccharidosis, type IIIB (MPS IIIB) – A preliminary study with particular emphasis on the non-oxidative l-cysteine metabolism. Biochimie, 2020, 174, 84-94.	2.6	10
26	The neutralization of heparan sulfate by heparin-binding copolymer as a potential therapeutic target. RSC Advances, 2019, 9, 3020-3029.	3.6	9
27	The Expression and Activity of Rhodanese, 3-Mercaptopyruvate Sulfurtransferase, Cystathionine \hat{I}^3 -Lyase in the Most Frequently Chosen Cellular Research Models. Biomolecules, 2021, 11, 1859.	4.0	9
28	Heparin - a Key Drug in the Treatment of the Circulatory Degenerative Diseases: Controlling its Action with Polymers. Current Pharmaceutical Design, 2012, 18, 2591-2606.	1.9	8
29	Improved Pharmacokinetics and Tissue Uptake of Complexed Daidzein in Rats. Pharmaceutics, 2020, 12, 162.	4.5	8
30	Synthesis and Study of Antifungal Properties of New Cationic Beta-Glucan Derivatives. Pharmaceuticals, 2021, 14, 838.	3.8	7
31	Heparan Sulfate, Mucopolysaccharidosis IIIB and Sulfur Metabolism Disorders. Antioxidants, 2022, 11, 678.	5.1	7
32	The Inhibitory Effect of Protamine on Platelets is Attenuated by Heparin without Inducing Thrombocytopenia in Rodents. Marine Drugs, 2019, 17, 539.	4.6	6
33	Hydroxypropylcellulose-graft-poly(N-isopropylacrylamide) — novel water-soluble copolymer with double thermoresponsivity. Polimery, 2013, 58, 696-702.	0.7	5
34	Effect of glycosaminoglycans accumulation on the non-oxidative sulfur metabolism in mouse model of Sanfilippo syndrome, type B. Acta Biochimica Polonica, 2019, 66, 567-576.	0.5	5
35	Cell proliferation induced by modified cationic dextran. Bio-Algorithms and Med-Systems, 2018, 14, .	2.4	4
36	Growth of Lactic Acid Bacteria on Gold—Influence of Surface Roughness and Chemical Composition. Nanomaterials, 2020, 10, 2499.	4.1	4

#	Article	IF	CITATIONS
37	The antiatherogenic effect of new biocompatible cationically modified polysaccharides: chitosan and pullulan - the comparison study. Journal of Physiology and Pharmacology, 2018, 69, .	1.1	3
38	Self-Organized Nanoparticles of Random and Block Copolymers of Sodium 2-(Acrylamido)-2-methyl-1-propanesulfonate and Sodium 11-(Acrylamido)undecanoate as Safe and Effective Zika Virus Inhibitors. Pharmaceutics, 2022, 14, 309.	4.5	3
39	New long-term action insulin formulations obtained using polycations for heparin neutralization. Bio-Algorithms and Med-Systems, 2019, 15, .	2.4	1
40	Physicochemical Investigation of Biosynthesis of a Protein Coating on Glass That Promotes Mammalian Cell Growth Using Lactobacillus rhamnosus GG Bacteria. Coatings, 2021, 11, 1410.	2.6	1
41	Monitoring of Anticoagulant Activity of Dabigatran and Rivaroxaban in the Presence of Heparins. Journal of Clinical Medicine, 2022, 11, 2236.	2.4	1