An-Ya Lo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5946895/publications.pdf

Version: 2024-02-01

48 papers

1,485

20 h-index 315739 38 g-index

48 all docs 48 docs citations

48 times ranked

2456 citing authors

#	Article	IF	CITATIONS
1	Hydrothermal Synthesis of CuO/RuO2/MWCNT Nanocomposites with Morphological Variants for High Efficient Supercapacitors. Catalysts, 2022, 12, 23.	3.5	10
2	Review and prospects of microporous zeolite catalysts for CO2 photoreduction. Applied Materials Today, 2021, 23, 101042.	4.3	17
3	Ordered mesoporous photocatalysts for CO ₂ photoreduction. Journal of Materials Chemistry A, 2021, 9, 26430-26453.	10.3	27
4	Hollow TiO2 Microsphere/Graphene Composite Photocatalyst for CO2 Photoreduction. Catalysts, 2021, 11, 1532.	3. 5	6
5	Effect of Composition Ratios on the Performance of Graphene/Carbon Nanotube/Manganese Oxide Composites toward Supercapacitor Applications. ACS Omega, 2020, 5, 578-587.	3.5	21
6	Improving the Supercapacitor Performance by Dispersing SiO ₂ Microspheres in Electrodes. ACS Omega, 2020, 5, 11522-11528.	3. 5	22
7	Pta€ RuO <mmi:math xmins:mmi='nttp://www.w3.org/1998/Nath/MathIVIL"'><mmi:msub><mmi:mrow></mmi:mrow> <mml:mi mathvariant="normal">u</mml:mi> â€"SnO<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow> <mml:mi mathvariant="normal">v</mml:mi> </mml:msub></mml:math>/CMK-3 composite electrocatalysts for</mmi:msub></mmi:math>	0.5	4
8	Origin of High Selectivity of Dimethyl Ether Carbonylation in the 8-Membered Ring Channel of Mordenite Zeolite. Journal of Physical Chemistry C, 2019, 123, 15503-15512.	3.1	28
9	Exploitation of de-oiled jatropha waste for gold nanoparticles synthesis: A green approach. Arabian Journal of Chemistry, 2018, 11, 247-255.	4.9	58
10	Synthesis of a Homogeneous Propyl Sulfobetaine-Tungstophosphoric Acid Catalyst with Tunable Acidic Strength and Its Application to Waste Wood Hydrolysis. Catalysis Letters, 2018, 148, 3269-3279.	2.6	0
11	Optically stimulated luminescence radiation response of Au/Al 2 O 3 phosphors. Radiation Physics and Chemistry, 2017, 140, 61-67.	2.8	1
12	Theoretical study of olefin protonation reactions confined inside mordenite zeolite by energy decomposition analysis. Molecular Catalysis, 2017, 437, 47-56.	2.0	6
13	Pt 20 Ru x Sn y nanoparticles dispersed on mesoporous carbon CMK-3 and their application in the oxidation of 2-carbon alcohols and fermentation effluent. Electrochimica Acta, 2017, 225, 207-214.	5.2	8
14	Advanced superhydrophobic electroactive fluorinated polyimide and its application in anticorrosion coating. International Journal of Green Energy, 2017, 14, 113-120.	3.8	30
15	Electroactive polyamide modified carbon paste electrode for the determination of ascorbic acid. International Journal of Green Energy, 2016, 13, 1334-1341.	3.8	7
16	p-Type highly conductive and transparent NdF3-doped tin oxide films prepared by dip coating. Thin Solid Films, 2016, 618, 159-164.	1.8	2
17	Origin of Zeolite Confinement Revisited by Energy Decomposition Analysis. Journal of Physical Chemistry C, 2016, 120, 27349-27363.	3.1	12
18	Synthesis of electroactive polyazomethine and its application in electrochromic property and electrochemical sensor. Surface and Coatings Technology, 2016, 303, 154-161.	4.8	22

#	Article	IF	CITATIONS
19	Low Humidifying Proton Exchange Membrane Fuel Cells with Enhanced Power and Pt–C–h-SiO2 Anodes Prepared by Electrophoretic Deposition. ACS Sustainable Chemistry and Engineering, 2016, 4, 1303-1310.	6.7	15
20	Electroactive polyurea/CNT composite-based electrode for detection of vitamin C. EXPRESS Polymer Letters, 2016, 10, 450-461.	2.1	13
21	Nano- and Biomaterials for Sustainable Development. Journal of Nanomaterials, 2015, 2015, 1-2.	2.7	5
22	Electrophoretic Deposited Pt/C/SiO2 Anode for Self-Humidifying and Improved Catalytic Activity in PEMFC. Electrochimica Acta, 2015, 180, 610-615.	5.2	5
23	Honeycomb-like Porous Carbon–Cobalt Oxide Nanocomposite for High-Performance Enzymeless Glucose Sensor and Supercapacitor Applications. ACS Applied Materials & Interfaces, 2015, 7, 15812-15820.	8.0	216
24	Synthesis of Strong Light Scattering Absorber of TiO ₂ –CMK-3/Ag for Photocatalytic Water Splitting under Visible Light Irradiation. ACS Applied Materials & Diterfaces, 2015, 7, 8412-8418.	8.0	25
25	Study on RuO2/CMK-3/CNTs composites for high power and high energy density supercapacitor. Applied Energy, 2015, 153, 15-21.	10.1	37
26	Spatially controllable plasmon enhanced water splitting photocurrent in Au/TiO ₂ –Fe ₂ O ₃ cocatalyst system. RSC Advances, 2014, 4, 45710-45714.	3.6	18
27	Roles of organic acids during exectrooxidation reaction over Pt-supported carbon electrodes in direct methanol fuel cells. International Journal of Hydrogen Energy, 2013, 38, 12984-12990.	7.1	6
28	Significant improvement in the thermoelectric properties of zwitterionic polysquaraine composite films. Materials Chemistry and Physics, 2013, 141, 920-928.	4.0	9
29	An in situ fabrication process for highly electrical conductive polyimide/MWCNT composite films using 2,6-diaminoanthraquinone. Composites Science and Technology, 2013, 87, 174-181.	7.8	31
30	Syntheses of carbon porous materials with varied pore sizes and their performances as catalyst supports during methanol oxidation reaction. Applied Energy, 2012, 100, 66-74.	10.1	37
31	Fabrication of CNTs with controlled diameters and their applications as electrocatalyst supports for DMFC. Diamond and Related Materials, 2011, 20, 343-350.	3.9	16
32	Gold nanoparticles supported on periodic mesoporous organosilicas for epoxidation of olefins: Effects of pore architecture and surface modification method of the supports. Microporous and Mesoporous Materials, 2011, 143, 426-434.	4.4	28
33	Effect of Temperature Gradient Direction in the Catalyst Nanoparticle on CNTs Growth Mode. Nanoscale Research Letters, 2010, 5, 1393-1402.	5.7	8
34	Process and properties of the carbon nanotube assisted LiCoO[sub 2] thin-film battery electrode by pulsed laser deposition. Journal of Vacuum Science & Technology B, 2009, 27, 3067.	1.3	3
35	Fe2O3/SBA-15 catalyst synthesized by chemical vapor infiltration for Friedel–Crafts alkylation reaction. Microporous and Mesoporous Materials, 2009, 123, 306-313.	4.4	24
36	Adsorption of lysozyme on spherical mesoporous carbons (SMCs) replicated from colloidal silica arrays by chemical vapor deposition. Journal of Colloid and Interface Science, 2009, 339, 439-445.	9.4	12

#	ARTICLE	IF	CITATION
37	Structural evolution and electrocatalytic application of nitrogen-doped carbon shells synthesized by pyrolysis of near-monodisperse polyaniline nanospheres. Journal of Materials Chemistry, 2009, 19, 5985.	6.7	96
38	Fabrication and Characterization of Well-Dispersed and Highly Stable PtRu Nanoparticles on Carbon Mesoporous Material for Applications in Direct Methanol Fuel Cell. Chemistry of Materials, 2008, 20, 1622-1628.	6.7	136
39	Hollowed carbon capsule based Pt–Fe/carbon electrodecatalysts prepared by chemical vapor infiltration method. Diamond and Related Materials, 2008, 17, 1541-1544.	3.9	3
40	A High Efficiency Surface Modification Process for Multiwalled Carbon Nanotubes by Electron Cyclotron Resonance Plasma. Journal of Physical Chemistry C, 2008, 112, 18431-18436.	3.1	19
41	Fabrication of highly dispersed Pt nanoparticles in tubular carbon mesoporous materials for hydrogen energy applications. Studies in Surface Science and Catalysis, 2007, 165, 853-856.	1.5	O
42	Synthesis of uniform carbon nanotubes by chemical vapor infiltration method using SBA-15 mesoporous silica as template. Studies in Surface Science and Catalysis, 2007, 165, 409-412.	1.5	0
43	Controlled synthesis of highly dispersed platinum nanoparticles in ordered mesoporous carbons. Chemical Communications, 2006, , 3435.	4.1	99
44	Template-assisted synthesis of mesoporous tubular carbon nanostructure by chemical vapor infiltration method. Thin Solid Films, 2006, 498, 193-197.	1.8	13
45	Acidity and Catalytic Behaviors of Ordered Mesoporous Aluminosilicate Materials Containing Zeolite Building Units. Catalysis Letters, 2006, 108, 173-178.	2.6	16
46	A solid-state NMR, FT-IR and TPD study on acid properties of sulfated and metal-promoted zirconia: Influence of promoter and sulfation treatment. Catalysis Today, 2006, 116, 111-120.	4.4	177
47	The role of nitrogen in carbon nanotube formation. Diamond and Related Materials, 2003, 12, 1851-1857.	3.9	90
48	Feasibility studies of magnetic particle-embedded carbon nanotubes for perpendicular recording media. Diamond and Related Materials, 2003, 12, 799-805.	3.9	47