Vinoth-Kumar Lakshmanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5946754/publications.pdf

Version: 2024-02-01

67 papers

3,130 citations

28 h-index 55 g-index

74 all docs

74 docs citations

74 times ranked 5176 citing authors

#	Article	IF	CITATIONS
1	Piperine Attenuates Lithocholic Acid-Stimulated Interleukin-8 by Suppressing Src/EGFR and Reactive Oxygen Species in Human Colorectal Cancer Cells. Antioxidants, 2022, 11, 530.	2.2	6
2	New insights on the early prostate cancer diagnosis in a real-world setting. Investigative and Clinical Urology, 2022, 63, 248.	1.0	O
3	Preparation and characterization of an elastin nanogel with enhanced biocompatibility and improved entrapment efficiency in prostate cancer cells. Materials Express, 2021, 11, 16-27.	0.2	1
4	Nanomedicine-based cancer immunotherapy: recent trends and future perspectives. Cancer Gene Therapy, 2021, 28, 911-923.	2.2	44
5	A modern era of personalized medicine in the diagnosis, prognosis, and treatment of prostate cancer. Computers in Biology and Medicine, 2020, 126, 104020.	3.9	9
6	Nootkatone, a Dietary Fragrant Bioactive Compound, Attenuates Dyslipidemia and Intramyocardial Lipid Accumulation and Favorably Alters Lipid Metabolism in a Rat Model of Myocardial Injury: An In Vivo and In Vitro Study. Molecules, 2020, 25, 5656.	1.7	17
7	Suppression of Urokinase-Type Plasminogen Activator Receptor by Docosahexaenoic Acid Mediated by Heme Oxygenase-1 in 12-O-Tetradecanoylphorbol-13-Acetate-Induced Human Endothelial Cells. Frontiers in Pharmacology, 2020, 11, 577302.	1.6	1
8	Characterization and antibacterial activity of PVA–PVP–CS carvacrol-loaded polymer composite films for urinary catheter. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 1016-1027.	1.8	4
9	Polymeric nanomicelles for cancer theragnostics. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 119-130.	1.8	10
10	Bacterial Resistance and Prostate Cancer Susceptibility Toward Metal-Ion-doped DNA Complexes. ACS Applied Materials & Interfaces, 2018, 10, 44290-44300.	4.0	5
11	Metallo-Curcumin-Conjugated DNA Complexes Induces Preferential Prostate Cancer Cells Cytotoxicity and Pause Growth of Bacterial Cells. Scientific Reports, 2018, 8, 14929.	1.6	34
12	Comparison and Existence of Nanotechnology in Traditional Alternative Medicine: An Onset to Future Medicine. Nanoscience and Nanotechnology - Asia, 2018, 8, .	0.3	3
13	Prostate Cancer Cell-Specific Cytotoxicity of Sub-Micron Potassium Niobate Powder. Journal of Nanoscience and Nanotechnology, 2018, 18, 3141-3147.	0.9	3
14	In silico analysis of the deleterious nsSNPs (missense) in the homeobox domain of human <i>HOXB13</i> gene responsible for hereditary prostate cancer. Chemical Biology and Drug Design, 2017, 90, 188-199.	1.5	9
15	Computational Modeling of complete HOXB13 protein for predicting the functional effect of SNPs and the associated role in hereditary prostate cancer. Scientific Reports, 2017, 7, 43830.	1.6	36
16	Leucas aspera Nanomedicine Shows Superior Toxicity and Cell Migration Retarded in Prostate Cancer Cells. Applied Biochemistry and Biotechnology, 2017, 181, 1388-1400.	1.4	12
17	Assessment of Poly (vinyl alcohol) Coated Flutamide Nanoparticulates and their Efficacy on Prostate Cancer Cells. Current Drug Delivery, 2017, 14, 641-649.	0.8	2
18	<i>Biophytum sensitivum</i> nanomedicine reduces cell viability and nitrite production in prostate cancer cells. IET Nanobiotechnology, 2017, 11, 782-789.	1.9	0

#	Article	IF	Citations
19	Anti-Proliferative Effect of <i>Tinospora cordifolia</i> Nano Particles in Prostate Cancer Cells. Journal of Bionanoscience, 2016, 10, 127-133.	0.4	3
20	Theranostics., 2016,, 197-215.		16
21	Therapeutic efficacy of nanomedicines for prostate cancer: An update. Investigative and Clinical Urology, 2016, 57, 21.	1.0	16
22	Sustained Release of Rottlerin Encapsulated within Poly(D,L-Lactic-co-Glycolic Acid) Nanoparticles Inhibits Migration and Clonogenicity in Pancreatic Cancer Cells. Journal of Nanoscience and Nanotechnology, 2016, 16, 8330-8337.	0.9	0
23	Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds. International Journal of Nanomedicine, 2015, 10 Suppl 1, 53.	3.3	53
24	MP69-11 CARBONIC ANHYDRASE IX ASSAY: A PARADIGM SHIFT IN DIAGNOSIS OF MALIGNANT CYSTIC RENAL LESIONS Journal of Urology, 2015, 193, .	0.2	O
25	Effect of Baliospermum montanum nanomedicine apoptosis induction and anti-migration of prostate cancer cells. Biomedicine and Pharmacotherapy, 2015, 71, 201-209.	2.5	18
26	Combination of Anti-Diabetic Drug Metformin and Boswellic Acid Nanoparticles: A Novel Strategy for Pancreatic Cancer Therapy. Journal of Biomedical Nanotechnology, 2015, 11, 93-104.	0.5	28
27	Dendritic cell vaccination with a toll-like receptor agonist derived from mycobacteria enhances anti-tumor immunity. Oncotarget, 2015, 6, 33781-33790.	0.8	27
28	Cancer Kinases and its Novel Inhibitors: Past, Present and Future Challenges. Current Drug Targets, 2015, 16, 1233-1245.	1.0	11
29	Plumbagin Nanoparticles Induce Dose and pH Dependent Toxicity on Prostate Cancer Cells Current Drug Delivery, 2015, 12, 709-716.	0.8	18
30	Pharmaceutical Nano Drug Delivery Route Administration for Cancer Therapy. Advanced Science, Engineering and Medicine, 2015, 7, 739-745.	0.3	1
31	In Vitro and In Vivo Biological Evaluation of O-Carboxymethyl Chitosan Encapsulated Metformin Nanoparticles for Pancreatic Cancer Therapy. Pharmaceutical Research, 2014, 31, 3361-3370.	1.7	32
32	The Role of Nanotechnology in Prostate Cancer Theranostic Applications. Journal of Nanoscience and Nanotechnology, 2014, 14, 841-852.	0.9	14
33	Silymarin Encapsulated Poly(D, L-lactic-co-glycolic acid) Nanoparticles: A Prospective Candidate for Prostate Cancer Therapy. Journal of Biomedical Nanotechnology, 2014, 10, 559-570.	0.5	42
34	In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 238-251.	2.0	134
35	Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2730-2743.	1.1	140
36	Actively Targeted Cetuximab Conjugated Î ³ -Poly(glutamic acid)-Docetaxel Nanomedicines for Epidermal Growth Factor Receptor Over Expressing Colon Cancer Cells. Journal of Biomedical Nanotechnology, 2014, 10, 1416-1428.	0.5	41

#	Article	IF	CITATIONS
37	Chitosan cross-linked docetaxel loaded EGF receptor targeted nanoparticles for lung cancer cells. International Journal of Biological Macromolecules, 2014, 69, 532-541.	3.6	42
38	Enhanced Delivery of <i>Phyllanthus Niruri</i> Nanoparticles for Prostate Cancer Therapy. Journal of Bionanoscience, 2014, 8, 101-107.	0.4	2
39	On the Use of Carbon Nanotubes for Cell Anchoring and Spreading in Prostate Cancer Cells. Advanced Science Focus, 2014, 2, 62-66.	0.1	2
40	Anti-diabetic Drug Metformin: Challenges and Perspectives for Cancer Therapy. Current Cancer Drug Targets, 2014, 14, 727-736.	0.8	23
41	Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer. Carbohydrate Polymers, 2013, 91, 48-57.	5.1	102
42	Evaluation of Wound Healing Potential of \hat{l}^2 -Chitin Hydrogel/Nano Zinc Oxide Composite Bandage. Pharmaceutical Research, 2013, 30, 523-537.	1.7	145
43	Biochemical properties of Hemigraphis alternata incorporated chitosan hydrogel scaffold. Carbohydrate Polymers, 2013, 92, 1561-1565.	5.1	26
44	Drug delivery and tissue engineering applications of biocompatible pectin–chitin/nano CaCO3 composite scaffolds. Colloids and Surfaces B: Biointerfaces, 2013, 106, 109-116.	2.5	61
45	Enhanced Delivery System of Flutamide Loaded Chitosan-Dextran Sulphate Nanoparticles for Prostate Cancer. Journal of Biomedical Nanotechnology, 2013, 9, 335-347.	0.5	26
46	Development of Activated Carbon-Ceria Nanocomposite Materials for Prostate Cancer Therapy. Advanced Science, Engineering and Medicine, 2013, 5, 1132-1136.	0.3	3
47	Chitosan Based AGR2 siRNA Nanoparticle Delivery System for Prostate Cancer Cells. Journal of Chitin and Chitosan Science, 2013, 1, 161-165.	0.3	4
48	In Vitro Anti-Cancerous and Anti-Microbial Activity of Propolis Nanoparticles. Journal of Nanopharmaceutics and Drug Delivery, 2013, 1, 150-156.	0.3	9
49	Therapeutic Properties of Boswellic Acid Nanoparticles in Prostate Tumor–Bearing BALB/c Mice Model. Journal of Nanopharmaceutics and Drug Delivery, 2013, 1, 30-37.	0.3	10
50	Potential Use of Drug Loaded Nano Composite Pectin Scaffolds for the Treatment of Ovarian Cancer. Current Drug Delivery, 2013, 10, 326-335.	0.8	16
51	Synthesis and Biological Evaluation of Chitin Hydrogel/Nano ZnO Composite Bandage as Antibacterial Wound Dressing. Journal of Biomedical Nanotechnology, 2012, 8, 891-900.	0.5	107
52	Development of Cerium Oxide Nanoparticles and Its Cytotoxicity in Prostate Cancer Cells. Advanced Science Letters, 2012, 6, 17-25.	0.2	62
53	Flexible and Microporous Chitosan Hydrogel/Nano ZnO Composite Bandages for Wound Dressing: In Vitro and In Vivo Evaluation. ACS Applied Materials & Early: Interfaces, 2012, 4, 2618-2629.	4.0	670
54	O-Carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells. Carbohydrate Polymers, 2012, 89, 1003-1007.	5.1	98

#	Article	IF	CITATIONS
55	Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale, 2012, 4, 239-250.	2.8	224
56	Osteointegration of titanium implant is sensitive to specific nanostructure morphology. Acta Biomaterialia, 2012, 8, 1976-1989.	4.1	158
57	Chitosan-Based Nanoparticles in Cancer Therapy. Advances in Polymer Science, 2011, , 55-91.	0.4	29
58	Synthesis, characterization and cytocompatibility studies of \hat{l}_{\pm} -chitin hydrogel/nano hydroxyapatite composite scaffolds. International Journal of Biological Macromolecules, 2011, 49, 20-31.	3.6	63
59	A novel chitosan/polyoxometalate nano-complex for anti-cancer applications. Carbohydrate Polymers, 2011, 84, 887-893.	5.1	73
60	The anterior gradient 2 (AGR2) gene is overexpressed in prostate cancer and may be useful as a urine sediment marker for prostate cancer detection. Prostate, 2011, 71, 575-587.	1.2	79
61	Î ² -Chitin hydrogel/nano hydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate Polymers, 2011, 85, 584-591.	5.1	107
62	Innovative method for quantification of cell-cell adhesion in 96-well plates. Cell Adhesion and Migration, 2011, 5, 215-219.	1.1	13
63	Regulation of immune responses to Mycobacterium tuberculosis secretory antigens by dendritic cells. Tuberculosis, 2005, 85, 377-383.	0.8	15
64	Functional Characterization of the MENTAL Domain. Journal of Biological Chemistry, 2005, 280, 17945-17952.	1.6	60
65	Cross-regulation of CD86 by CD80 differentially regulates T helper responses from Mycobacterium tuberculosis secretory antigen-activated dendritic cell subsets. Journal of Leukocyte Biology, 2004, 75, 874-883.	1.5	20
66	Downâ€Regulation of T Helper 1 Responses to Mycobacterial Antigens Due to Maturation of Dendritic Cells by 10â€kDaMycobacterium tuberculosisSecretory Antigen. Journal of Infectious Diseases, 2003, 187, 914-928.	1.9	36
67	<i>Mycobacterium tuberculosis</i> Antigens Induce the Differentiation of Dendritic Cells from Bone Marrow. Journal of Immunology, 2002, 169, 6856-6864.	0.4	41