Jingya Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5946109/publications.pdf

Version: 2024-02-01

59 papers	738 citations	16 h-index	610901 24 g-index
74	74	74	610 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	SYNTHESIS OF 2-(4-METHOXYLPHENYLOXY-ACETYLAMIDO)-5-ARYLOXYMETHYL-1,3,4-OXADIAZOLES UNDER MICROWAVE IRRADIATION. Synthetic Communications, 2002, 32, 1097-1103.	2.1	48
2	Visible-light-mediated iodine-catalyzed \hat{l}_{\pm} -hydroxylation of \hat{l}_{\pm} -methylene ketones under aerobic conditions. Organic Chemistry Frontiers, 2018, 5, 1325-1329.	4.5	38
3	Copper-catalyzed oxidative phosphonation of 3,4-dihydro-1,4-benzoxazin-2-ones. Organic Chemistry Frontiers, 2018, 5, 3534-3537.	4.5	38
4	Visibleâ€Lightâ€Mediated Rose Bengalâ€Catalyzed αâ€Hydroxymethylation of Ketones with Methanol. Advanced Synthesis and Catalysis, 2018, 360, 3471-3476.	4.3	37
5	Visible-Light-Promoted Site-Selective $\langle i \rangle N \langle i \rangle \langle sup \rangle 1 \langle sup \rangle - Alkylation of Benzotriazoles with \hat{l}\pm -Diazoacetates. Organic Letters, 2020, 22, 7284-7289.$	4.6	34
6	Visible-Light-Mediated Hydroacylation of Azobenzenes with \hat{l}_{\pm} -Keto Acids. Organic Letters, 2020, 22, 8407-8412.	4.6	31
7	One-step construction of saturated six-membered rings directly using calcium carbide as an acetylene source: synthesis of 1,3,5-triaroylcyclohexanes. Tetrahedron, 2016, 72, 4321-4328.	1.9	28
8	Agl-PEG400-KI Catalyzed Environmentally Benign Synthesis of Aroyl Cyanides Using Potassium Hexacyanoferrate(II) as the Cyanating Agent. Synlett, 2006, 2006, 2495-2497.	1.8	27
9	Oneâ€Pot Threeâ€Component Mild Synthesis of 2â€Arylâ€3â€(9â€alkylcarbazolâ€3â€yl)thiazolidinâ€4â€ones. Jo Heterocyclic Chemistry, 2012, 49, 1458-1461.	urnal of	27
10	Cobalt-Catalyzed \hat{l}_{\pm} -Methoxymethylation and Aminomethylation of Ketones with Methanol as a C1 Source. Organic Letters, 2018, 20, 6774-6779.	4.6	26
11	Visible-light-promoted decarboxylative addition cyclization of $\langle i \rangle N \langle i \rangle$ -aryl glycines and azobenzenes to access 1,2,4-triazolidines. Green Chemistry, 2021, 23, 5806-5811.	9.0	24
12	Catalyst-free, visible-light-promoted S–H insertion reaction between thiols and α-diazoesters. Organic and Biomolecular Chemistry, 2020, 18, 9494-9498.	2.8	22
13	Visible-light-promoted selective $\langle i \rangle O \langle /i \rangle$ -alkylation of 2-pyridones with $\hat{l}\pm$ -aryldiazoacetates. Organic and Biomolecular Chemistry, 2021, 19, 394-398.	2.8	22
14	Highly Efficient Synthesis of N 1-Substituted 1H-Indazoles by DBU-Catalyzed Aza-Michael Reaction of Indazole with Enones. Synthesis, 2016, 48, 1139-1146.	2.3	21
15	Conjugate Hydrocyanation of Aromatic Enones Using Potassium Hexacyanoferrate(II) as an Eco-Friendly Cyanide Source. Synlett, 2012, 23, 2567-2571.	1.8	20
16	Visible-Light-Promoted Diboron-Mediated Transfer Hydrogenation of Azobenzenes to Hydrazobenzenes. Journal of Organic Chemistry, 2021, 86, 4804-4811.	3.2	17
17	2-Hydroxylation of 1,3-Diketones with Atmospheric Oxygen. Synlett, 2015, 26, 2863-2865.	1.8	16
18	Visible-Light-Promoted Aerobic Oxyphosphorylation of α-Diazoesters with H-Phosphine Oxides. Organic Letters, 2022, 24, 1530-1535.	4.6	15

#	Article	IF	CITATIONS
19	Photocatalyzed redox-neutral decarboxylative alkylation of heteroaryl methanamines. Green Chemistry, 2021, 23, 774-779.	9.0	14
20	Regioselective 1,4-conjugate hydrocyanation of dienones using potassium hexacyanoferrate(II) as an eco-friendly cyanide source. Tetrahedron, 2014, 70, 5619-5625.	1.9	13
21	Highly Efficient Syntheses of <i>β</i> â€Cyanoketones via Conjugate Addition of Me ₃ SiCN to Aromatic Enones. Chinese Journal of Chemistry, 2010, 28, 981-987.	4.9	12
22	Potassium Hydroxide Catalysed Intermolecular Aza-Michael Addition of 3-Cyanoindole to Aromatic Enones. Synlett, 2017, 28, 1227-1231.	1.8	12
23	Regioselective 1,4-conjugate aza-Michael addition of dienones with benzotriazole. Heterocyclic Communications, 2017, 23, 287-291.	1.2	12
24	Cyanoaroylation of Imines Bearing a Thiazole Ring using Potassium Hexacyanoferrate(II) as an Eco-Friendly Cyanide Source. Journal of Chemical Research, 2012, 36, 709-711.	1.3	11
25	Hydrocyanation of 2-arylmethyleneindan-1,3-diones using potassium hexacyanoferrate(II) as a nontoxic cyanating agent. Green Processing and Synthesis, 2019, 8, 93-99.	3.4	11
26	The Highly Efficient 1,4-Addition of TMSCN to Aromatic Enones Catalyzed by CsF with Water as the Additive. Synlett, 2009, 2009, 3365-3367.	1.8	10
27	Chiral Sodium Phosphate Catalyzed Enantioselective 1,4-Addition of TMSCN to Aromatic Enones. Synlett, 2010, 2010, 2725-2728.	1.8	10
28	Highly Efficient Cs2CO3-Catalyzed 1,4-Addition of Me3SiCN to Enones with Water as the Additive. Synthesis, 2010, 2010, 1325-1333.	2.3	10
29	Monohydrocyanation of Symmetrical Azines Using Potassium Hexacyanoferrate(II) as an Environmentally Friendly Cyanide Source. Synlett, 2014, 25, 1786-1790.	1.8	10
30	ZnI2-Catalyzed Cyanation of Acyl Chlorides with TMS-CN: An Interesting Role of Iodine. Letters in Organic Chemistry, 2009, 6, 637-641.	0.5	9
31	Regioselective Monoâ€azaâ€Michael Additions of Divinyl Ketones with Benzotriazole and Other <i>N</i> â€Heterocycles. Journal of Heterocyclic Chemistry, 2017, 54, 3410-3417.	2.6	9
32	Hydrocyanation of Arylidenemalonates using Potassium Hexacyanoferrate(II) as an Eco-Friendly Cyanide Source. Journal of Chemical Research, 2013, 37, 601-603.	1.3	8
33	Hydrocyanation of Unsaturated Imines Using Potassium Hexacyanoferrate(II) as a Cyanide Source. Chinese Journal of Chemistry, 2014, 32, 1251-1254.	4.9	8
34	Visible-light-promoted \hat{l}_{\pm} -methoxymethylation and aminomethylation of ketones with methanol as the C1 source. Organic and Biomolecular Chemistry, 2021, 19, 5572-5576.	2.8	8
35	Cesium Carbonate Catalyzed Aza-Michael Addition of Pyrazole to <i>$\hat{l}\pm$, <i>\hat{l}^2-Unsaturated Ketones. Chinese Journal of Organic Chemistry, 2015, 35, 121.</i></i>	1.3	7
36	Direct synthesis of 2,3-diaryloxirane-2,3-dicarbonitriles from aroyl chlorides using potassium hexacyanoferrate(II) as an eco-friendly cyanide source. Tetrahedron, 2012, 68, 8880-8883.	1.9	5

#	Article	IF	Citations
37	Copper-catalyzed synthesis of 1,3,5-triarylpentane-1,5-diones from \hat{l}_{\pm},\hat{l}^2 -unsaturated ketones. RSC Advances, 2015, 5, 52121-52125.	3.6	5
38	Chemoselective Double Michael Addition: Synthesis of 2,6-Diarylspiro[Cyclohexane-1,3′-Indoline]-2′,4-Diones via Addition of Indolin-2-One to Divinyl Ketones. Journal of Chemical Research, 2017, 41, 168-171.	1.3	5
39	Catalyst-free sulfa-Michael addition of pyrimidine-2-thiol to nitroolefins. Journal of Sulfur Chemistry, 2017, 38, 686-698.	2.0	5
40	Controllable single- or double-oxa-Michael addition of ynones with alcohols: Synthesis of 3-alkoxyprop-2-en-1-ones and 3,3-dialkoxypropan-1-ones. Tetrahedron, 2018, 74, 6612-6619.	1.9	5
41	Advance in Catalytic Asymmetric Conjugate Cyanation. Chinese Journal of Organic Chemistry, 2016, 36, 502.	1.3	5
42	Aerobic Oxidative Synthesis of 3,5-disubstituted Isoxazoles Directly from \hat{l}_{\pm},\hat{l}^2 -unsaturated Ketones. Journal of Chemical Research, 2016, 40, 643-644.	1.3	4
43	Synthesis of 7-arylethyl-5-arylpyrazolo $f[1,]5hbox {-}a]$ [$f[1,5-a]$ pyrimidines through an aza-Michael addition/nucleophilic addition/1,3-hydrogen transfer cascade. Journal of Chemical Sciences, 2017, 129, 1579-1586.	1.5	4
44	Alkali Salt-Catalyzed Aza-Michael Addition of 1,2,4-Triazole to $\langle i \rangle \hat{l} \pm \langle i \rangle$, $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Unsaturated Ketones and Imides. Chinese Journal of Organic Chemistry, 2020, 40, 115.	1.3	4
45	Cobalt-catalyzed direct α-hydroxymethylation of amides with methanol as a C1 source. Chemical Communications, 2022, 58, 1382-1385.	4.1	4
46	Soluble poly(ethylene glycol) supported efficient synthesis of 2,5-disubstituted 1,3,4-oxadiazoles and 1,3,4-thiadiazoles. Heteroatom Chemistry, 2006, 17, 664-669.	0.7	3
47	A concise synthetic method for 1,3,5-triazinane-2,4-dithiones. Journal of the Brazilian Chemical Society, 2011, 22, 1939-1943.	0.6	3
48	Selective Monohydrocyanation of Diimine using Potassium Hexacyanoferrate(II)-Benzoyl Chloride Reagent System as a Cyanide Source. Journal of Chemical Sciences, 2016, 128, 1849-1853.	1.5	3
49	Lithium Chloride Catalyzed Aza-Michael Addition of Pyrazoles to \hat{l}_{\pm},\hat{l}^2 -Unsaturated Imides. Synthesis, 2019, 51, 3142-3150.	2.3	3
50	Electrochemical Synthesis of Sulfinic Esters via Aerobic Oxidative Esterification of Thiophenols with Alcohols. Synthesis, 2020, 52, 2705-2712.	2.3	3
51	SYNTHESIS OF 2-AROYLAMINO-5-ARYLOXYMETHYL-1,3,4-THIADIAZOLES UNDER LIQUID-LIQUID PHASE TRANSFER CATALYSIS. Synthetic Communications, 2001, 31, 1447-1452.	2.1	2
52	Efficient Synthesis of 1â€(5′â€Acylaminoâ€1′,3′,4′â€thiadiazolâ€2′â€yl)â€4â€acylâ€thiosemicar Communications, 2006, 36, 2355-2362.	bazides. S	ynthetic
53	Hydrocyanation of Sulfonylimines Using Potassium Hexacyanoferrate(II) as an Eco-Friendly Cyanide Source. Journal of the Brazilian Chemical Society, 2013, , .	0.6	2
54	Synthesis of 4-arylethyl-6-arylpyrimidine-2-thiols through aza-Michael addition/nucleophilic addition/aromatization tandem reactions. Heterocyclic Communications, 2018, 24, 23-26.	1.2	2

#	Article	IF	CITATIONS
55	Me ₃ SiCl-Promoted Conjugate Hydrocyanation of <i>α</i> , <i>β</i> -Unsaturated Ketones Using Potassium Hexacyanoferrate(II) as Cyanide Source. Chinese Journal of Organic Chemistry, 2015, 35, 1286.	1.3	2
56	2-(3-Nitrophenyl)-4-oxo-4-phenylbutanenitrile. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1610-o1610.	0.2	1
57	One-pot three-component synthesis of 2-(3,5-diaryl-4,5-dihydropyrazol-1-yl)-1,3,4-thiadiazoles. Heterocyclic Communications, 2012, 18, .	1.2	O
58	2-(4-Chlorophenyl)-4-oxo-4-phenylbutanenitrile. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o259-o259.	0.2	0
59	Selective S-Allylic Alkylation of 2-Thiopyrimidine with Morita-Baylis-Hillman Carbonates. Chinese Journal of Organic Chemistry, 2017, 37, 2078.	1.3	0