
Andrew J Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5946021/publications.pdf Version: 2024-02-01

ANDREWLTHOMPSON

#	Article	IF	CITATIONS
1	Elevated CO2 and high endogenous ABA level alleviate PEG-induced short-term osmotic stress in tomato plants. Environmental and Experimental Botany, 2022, 194, 104763.	2.0	9
2	Missense mutation of a class B heat shock factor is responsible for the tomato bushy root-2 phenotype. Molecular Horticulture, 2022, 2, .	2.3	2
3	New insights into the effects of ethylene on ABA catabolism, sweetening and dormancy in stored potato tubers. Postharvest Biology and Technology, 2021, 173, 111420.	2.9	21
4	Identifying opportunities to improve management of water stress in banana production. Scientia Horticulturae, 2021, 276, 109735.	1.7	40
5	<i>De novo</i> genome assembly of <i>Solanum sitiens</i> reveals structural variation associated with drought and salinity tolerance. Bioinformatics, 2021, 37, 1941-1945.	1.8	9
6	NCED expression is related to increased ABA biosynthesis and stomatal closure under aluminum stress. Environmental and Experimental Botany, 2021, 185, 104404.	2.0	33
7	Overproduction of <scp>ABA</scp> in rootstocks alleviates salinity stress in tomato shoots. Plant, Cell and Environment, 2021, 44, 2966-2986.	2.8	30
8	Improving the Tea Withering Process Using Ethylene or UV-C. Journal of Agricultural and Food Chemistry, 2021, 69, 13596-13607.	2.4	8
9	Impact of overexpression of 9-cis-epoxycarotenoid dioxygenase on growth and gene expression under salinity stress. Plant Science, 2020, 295, 110268.	1.7	29
10	The mechanism of root growth inhibition by the endocrine disruptor bisphenol A (BPA). Environmental Pollution, 2020, 257, 113516.	3.7	17
11	Control of waterâ€use efficiency by florigen. Plant, Cell and Environment, 2020, 43, 76-86.	2.8	6
12	Overâ€accumulation of abscisic acid in transgenic tomato plants increases the risk of hydraulic failure. Plant, Cell and Environment, 2020, 43, 548-562.	2.8	24
13	Multi-stakeholder analysis to improve agricultural water management policy and practice in Malta. Agricultural Water Management, 2020, 229, 105920.	2.4	29
14	Transcriptome and phytohormone changes associated with ethylene-induced onion bulb dormancy. Postharvest Biology and Technology, 2020, 168, 111267.	2.9	13
15	A loss-of-function allele of a TAC1-like gene (SITAC1) located on tomato chromosome 10 is a candidate for the Erectoid leaf (Erl) mutation. Euphytica, 2019, 215, 1.	0.6	9
16	Developing a water strategy for sustainable irrigated agriculture in Mediterranean island communities $\hat{a} \in $ Insights from Malta. Outlook on Agriculture, 2019, 48, 143-151.	1.8	5
17	Fructans redistribution prior to sprouting in stored onion bulbs is a potential marker for dormancy break. Postharvest Biology and Technology, 2019, 149, 221-234.	2.9	17
18	A member of the <i>TERMINAL FLOWER 1/CENTRORADIALIS</i> gene family controls sprout growth in potato tubers. Journal of Experimental Botany, 2019, 70, 835-843.	2.4	26

#	Article	IF	CITATIONS
19	BIFURCATE FLOWER TRUSS: a novel locus controlling inflorescence branching in tomato contains a defective MAP kinase gene. Journal of Experimental Botany, 2018, 69, 2581-2593.	2.4	6
20	Promotion of Germination Using Hydroxamic Acid Inhibitors of 9-cis-Epoxycarotenoid Dioxygenase. Frontiers in Plant Science, 2017, 8, 357.	1.7	11
21	Improving Soil and Water Management for Agriculture: Insights and Innovation from Malta. MCAST Journal of Applied Research & Practice, 2017, 1, 40-59.	0.1	5
22	Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal. PLoS ONE, 2016, 11, e0152148.	1.1	6
23	Identification of novel stress-responsive biomarkers from gene expression datasets in tomato roots. Functional Plant Biology, 2016, 43, 783.	1.1	7
24	ROOTSTOCK-MEDIATED VARIATION IN TOMATO VEGETATIVE GROWTH UNDER DROUGHT, SALINITY AND SOIL IMPEDANCE STRESSES. Acta Horticulturae, 2015, , 141-146.	0.1	13
25	Biochemical characterization and selective inhibition of βâ€carotene <i>cis–trans</i> isomerase D27 and carotenoid cleavage dioxygenase <scp>CCD</scp> 8 on the strigolactone biosynthetic pathway. FEBS Journal, 2015, 282, 3986-4000.	2.2	39
26	Unravelling rootstockxscion interactions to improve food security. Journal of Experimental Botany, 2015, 66, 2211-2226.	2.4	238
27	Resequencing at ≥40-Fold Depth of the Parental Genomes of a <i>Solanum lycopersicum</i> × <i>S. pimpinellifolium</i> Recombinant Inbred Line Population and Characterization of Frame-Shift InDels That Are Highly Likely to Perturb Protein Function. G3: Genes, Genomes, Genetics, 2015, 5, 971-981.	0.8	18
28	Investigation of Water Dynamics and the Effect of Evapotranspiration on Grain Yield of Rainfed Wheat and Barley under a Mediterranean Environment: A Modelling Approach. PLoS ONE, 2015, 10, e0131360.	1.1	9
29	Automatic Detection of Regions in Spinach Canopies Responding to Soil Moisture Deficit Using Combined Visible and Thermal Imagery. PLoS ONE, 2014, 9, e97612.	1.1	36
30	Environmental, developmental, and genetic factors controlling root system architecture. Biotechnology and Genetic Engineering Reviews, 2014, 30, 95-112.	2.4	18
31	Guidelines to use tomato in experiments with a controlled environment. Frontiers in Plant Science, 2014, 5, 625.	1.7	93
32	Periodic root branching in <i>Arabidopsis</i> requires synthesis of an uncharacterized carotenoid derivative. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1300-9.	3.3	139
33	Phytotoxic effects of selected N-benzyl-benzoylhydroxamic acid metallo-oxygenase inhibitors: investigation into mechanism of action. New Journal of Chemistry, 2013, 37, 3461.	1.4	4
34	Physiological, biochemical and transcriptional analysis of onion bulbs during storage. Annals of Botany, 2012, 109, 819-831.	1.4	46
35	ASSOCIATION OF GENE EXPRESSION DATA WITH DORMANCY AND SPROUT SUPPRESSION IN ONION BULBS USING A NEWLY DEVELOPED ONION MICROARRAY. Acta Horticulturae, 2012, , 169-174.	0.1	4
36	TRANSCRIPTIONAL ANALYSIS SUGGESTS SPROUT SUPPRESSION OF ONION DURING STORAGE USING ETHYLENE AND/OR 1-MCP IS MEDIATED VIA DIFFERENTIAL MODES OF ACTION. Acta Horticulturae, 2012, , 175-182.	0.1	1

#	Article	IF	CITATIONS
37	A rigorous approach of determining FAO56 dual crop coefficient using soil sensor measurements and inverse modeling techniques. Agricultural Water Management, 2011, 98, 1081-1090.	2.4	17
38	Identification of the tomato ABA-deficient mutant sitiens as a member of the ABA-aldehyde oxidase gene family using genetic and genomic analysis. Plant Growth Regulation, 2011, 64, 301-309.	1.8	46
39	Ethylene and 1-Methylcyclopropene Differentially Regulate Gene Expression during Onion Sprout Suppression Â. Plant Physiology, 2011, 156, 1639-1652.	2.3	31
40	Opportunities for improving irrigation efficiency with quantitative models, soil water sensors and wireless technology. Journal of Agricultural Science, 2010, 148, 1-16.	0.6	67
41	Does abscisic acid affect strigolactone biosynthesis?. New Phytologist, 2010, 187, 343-354.	3.5	243
42	Selective Inhibition of Carotenoid Cleavage Dioxygenases. Journal of Biological Chemistry, 2009, 284, 5257-5264.	1.6	44
43	The promoter from SIREO, a highly-expressed, root-specific Solanum lycopersicum gene, directs expression to cortex of mature roots. Functional Plant Biology, 2008, 35, 1224.	1.1	19
44	Overâ€expression of <i>LeNCED1</i> in tomato (<i>Solanum lycopersicum</i> L.) with the <i>rbcS3C</i> promoter allows recovery of lines that accumulate very high levels of abscisic acid and exhibit severe phenotypes. Plant, Cell and Environment, 2008, 31, 968-981.	2.8	84
45	Overproduction of Abscisic Acid in Tomato Increases Transpiration Efficiency and Root Hydraulic Conductivity and Influences Leaf Expansion. Plant Physiology, 2007, 143, 1905-1917.	2.3	309
46	A photoimmobilisation strategy that maximises exploration of chemical space in small molecule affinity selection and target discovery. Chemical Communications, 2007, , 2808.	2.2	17
47	Function and Stability of Abscisic Acid Acyl Hydrazone Conjugates by LC-MS2of ex Vivo Samples. Bioconjugate Chemistry, 2007, 18, 1355-1359.	1.8	3
48	Regulation and manipulation of ABA biosynthesis in roots. Plant, Cell and Environment, 2007, 30, 67-78.	2.8	95
49	A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics, 2006, 38, 948-952.	9.4	1,076
50	Regulation and Manipulation of the Biosynthesis of Abscisic Acid, Including the Supply of Xanthophyll Precursors. Journal of Plant Growth Regulation, 2005, 24, 253.	2.8	80
51	Ethylene Insensitivity Conferred by the Green-ripe and Never-ripe 2 Ripening Mutants of Tomato. Plant Physiology, 2005, 138, 267-275.	2.3	118
52	Complementation of notabilis, an abscisic acid-deficient mutant of tomato: importance of sequence context and utility of partial complementation. Plant, Cell and Environment, 2004, 27, 459-471.	2.8	71
53	Can ABA mediate responses of salinity stressed tomato. Environmental and Experimental Botany, 2003, 50, 17-28.	2.0	59
54	Genetic analysis and FISH mapping of the Colourless non-ripening locus of tomato. Theoretical and Applied Genetics, 2002, 104, 165-170.	1.8	15

#	Article	IF	CITATIONS
55	Altered Middle Lamella Homogalacturonan and Disrupted Deposition of (1→5)-α-l-Arabinan in the Pericarp ofCnr, a Ripening Mutant of Tomato. Plant Physiology, 2001, 126, 210-221.	2.3	127
56	MODIFYING CHRYSANTHEMUM (DENDRANTHEMA GRANDIFLORUM) GROWTH HABIT BY GENETIC MANIPULATION. Acta Horticulturae, 2000, , 319-322.	0.1	2
57	Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant Journal, 2000, 23, 363-374.	2.8	357
58	Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Plant Molecular Biology, 2000, 42, 833-845.	2.0	241
59	Control of abscisic acid synthesis. Journal of Experimental Botany, 2000, 51, 1563-1574.	2.4	251
60	Molecular and Genetic Characterization of a Novel Pleiotropic Tomato-Ripening Mutant1. Plant Physiology, 1999, 120, 383-390.	2.3	202
61	Characterization of the ABA-deficient tomato mutantnotabilisand its relationship with maizeVp14. Plant Journal, 1999, 17, 427-431.	2.8	266
62	Diurnal control of the drought-inducible putative histone H1 gene in tomato (Lycopersicon) Tj ETQqO O O rgBT / $\!G$	Dverlock 1	10 Tf 50 462 T
63	Structure and expression of a cDNA encoding a putative neoxanthin cleavage enzyme (NCE), isolated from a wilt-related tomato (Lycopersicon esculentumMill.) library. Journal of Experimental Botany, 1997, 48, 2111-2112.	2.4	59
64	Structure and expression of a cDNA encoding zeaxanthin epoxidase, isolated from a wilt-related tomato (Lycopersicon esculentumMill.) library. Journal of Experimental Botany, 1997, 48, 1749-1750.	2.4	33
65	Tetracycline-dependent activation of an upstream promoter reveals transcriptional interference between tandem genes within T-DNA in tomato. , 1997, 34, 687-692.		20
66	Inducible overexpression of oat arginine decarboxylase in transgenic tobacco plants. Plant Journal, 1997, 11, 465-473.	2.8	129
67	Gene note. Structure and expression of a cDNA encoding zeaxanthin epoxidase, isolated from a wilt-related tomato (Lycopersicon esculentum Mill.) library. Journal of Experimental Botany, 1997, 48, 1749-1750.	2.4	38
68	Toxicity symptoms caused by high expression of Tet represser in tomato (Lycopersicon esculentum) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5
69	Double strand break-induced recombination in Chlamydomonas reinhardtii chloroplasts. Nucleic Acids Research, 1996, 24, 3323-3331.	6.5	41
70	mRNA levels of four tomato (Lycopersicon esculentum Mill. L.) genes related to fluctuating plant and soil water status. Plant, Cell and Environment, 1995, 18, 773-780.	2.8	24
71	Nuclear "Run-On" Transcription Assays. , 1995, 49, 229-238.		8

A Chloroplast Group I Intron Undergoes the First Step of Reverse Splicing into Host Cytoplasmic 5·8 S 2.0 29 rRNA. Journal of Molecular Biology, 1994, 236, 455-468.

#	Article	IF	CITATIONS
73	Cleavage and recognition pattern of a double-strand-specific endonuclease (I-Crel) encoded by the chloroplast 23S rRNA intron of Chlamydomonas reinhardtii. Gene, 1992, 119, 247-251.	1.0	71
74	Differential Expression of Seed Storage Protein Genes in the Pea legJ Subfamily; Sequence of Gene legK. Biochemie Und Physiologie Der Pflanzen, 1991, 187, 1-12.	0.5	9
75	In vitroself-splicing reactions of the chloroplast group I intron Cr.LSU fromChlamydomonas reinhardtiiand in vivo manipulation via gene-replacement. Nucleic Acids Research, 1991, 19, 6611-6618.	6.5	44
76	Self-splicing of the Chlamydomonas chloroplast psbA introns Plant Cell, 1991, 3, 1095-1107.	3.1	38
77	Self-Splicing of the Chlamydomonas Chloroplast psbA Introns. Plant Cell, 1991, 3, 1095.	3.1	6
78	Transcriptional and posttranscriptional regulation of seed storage-protein gene expression in pea (Pisum sativum L.). Planta, 1989, 179, 279-287.	1.6	21
79	Expression of Pea Legumin Sequences in Pea, Nicotiana and Yeast. Biochemie Und Physiologie Der Pflanzen, 1988, 183, 183-197.	0.5	15

Biurnal control of the drought-inducible putative histone H1 gene in tomato (Lycopersicon) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 462 Te