
Benjamin J Shipway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5945890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. Journal of Advances in Modeling Earth Systems, 2011, 3, n/a-n/a.	3.8	249
2	Intercomparison of model simulations of mixedâ€phase clouds observed during the ARM Mixedâ€Phase Arctic Cloud Experiment. I: singleâ€layer cloud. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 979-1002.	2.7	224
3	Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2687-2692.	7.1	156
4	Droplet nucleation: Physically-based parameterizations and comparative evaluation. Journal of Advances in Modeling Earth Systems, 2011, 3, .	3.8	123
5	Intercomparison of largeâ€eddy simulations of Arctic mixedâ€phase clouds: Importance of ice size distribution assumptions. Journal of Advances in Modeling Earth Systems, 2014, 6, 223-248.	3.8	114
6	A comparison of TWPâ€ICE observational data with cloudâ€resolving model results. Journal of Geophysical Research, 2012, 117, .	3.3	108
7	Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 2196-2211.	2.7	100
8	Evaluation of cloudâ€resolving and limited area model intercomparison simulations using TWPâ€rCE observations: 1. Deep convective updraft properties. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,891.	3.3	100
9	Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure. Journal of Geophysical Research, 2011, 116, .	3.3	90
10	Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE. Journal of Advances in Modeling Earth Systems, 2011, 3, n/a-n/a.	3.8	90
11	A comparison of cloud-resolving model simulations of trade wind cumulus with aircraft observations taken during RICO. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 781-794.	2.7	84
12	Intercomparison of model simulations of mixedâ€phase clouds observed during the ARM Mixedâ€Phase Arctic Cloud Experiment. II: Multilayer cloud. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 1003-1019.	2.7	84
13	Ice in Clouds Experiment–Layer Clouds. Part II: Testing Characteristics of Heterogeneous Ice Formation in Lee Wave Clouds. Journals of the Atmospheric Sciences, 2012, 69, 1066-1079.	1.7	61
14	A model intercomparison of CCN-limited tenuous clouds in the high Arctic. Atmospheric Chemistry and Physics, 2018, 18, 11041-11071.	4.9	54
15	The relative importance of macrophysical and cloud albedo changes for aerosol-induced radiative effects in closed-cell stratocumulus: insight from the modelling of a case study. Atmospheric Chemistry and Physics, 2017, 17, 5155-5183.	4.9	51
16	Evaluation of cloudâ€resolving and limited area model intercomparison simulations using TWPâ€rCE observations: 2. Precipitation microphysics. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,919.	3.3	47
17	Processes Controlling Tropical Tropopause Temperature and Stratospheric Water Vapor in Climate Models. Journal of Climate, 2015, 28, 6516-6535.	3.2	47
18	Analytical estimation of cloud droplet nucleation based on an underlying aerosol population. Atmospheric Research, 2010, 96, 344-355.	4.1	45

BENJAMIN J SHIPWAY

#	Article	IF	CITATIONS
19	How sensitive are aerosolâ€precipitation interactions to the warm rain representation?. Journal of Advances in Modeling Earth Systems, 2015, 7, 987-1004.	3.8	41
20	Mixedâ€phase clouds in a turbulent environment. Part 1: Largeâ€eddy simulation experiments. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 855-869.	2.7	31
21	A mixed finiteâ€element, finiteâ€volume, semiâ€implicit discretization for atmospheric dynamics: Cartesian geometry. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2835-2853.	2.7	26
22	Cloud Microphysical Factors Affecting Simulations of Deep Convection During the Presummer Rainy Season in Southern China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,477.	3.3	21
23	A method to represent subgridâ€scale updraft velocity in kilometerâ€scale models: Implication for aerosol activation. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4149-4173.	3.3	19
24	ZLF (Zero Lateral Flux): a simple mass conservation method for semiâ€Lagrangianâ€based limitedâ€area models. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 2578-2584.	2.7	15
25	In situ data analytics for highly scalable cloud modelling on Cray machines. Concurrency Computation Practice and Experience, 2018, 30, e4331.	2.2	14
26	Aerosol–cloud interactions in mixed-phase convective clouds – Part 2: Meteorological ensemble. Atmospheric Chemistry and Physics, 2018, 18, 10593-10613.	4.9	13
27	Cloud feedbacks in extratropical cyclones: insight from long-term satellite data and high-resolution global simulations. Atmospheric Chemistry and Physics, 2019, 19, 1147-1172.	4.9	12
28	ls a more physical representation of aerosol activation needed for simulations of fog?. Atmospheric Chemistry and Physics, 2021, 21, 7271-7292.	4.9	10
29	Precipitation sensitivity to autoconversion rate in a numerical weatherâ€prediction model. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 2032-2044.	2.7	9
30	A compatible finiteâ€element discretisation for the moist compressible Euler equations. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 3187-3205.	2.7	9
31	Revisiting Twomey's approximation for peak supersaturation. Atmospheric Chemistry and Physics, 2015, 15, 3803-3814.	4.9	6
32	A directive based hybrid met office NERC cloud model. , 2015, , .		6
33	Challenges for Cloud Modeling in the Context of Aerosol–Cloud–Precipitation Interactions. Bulletin of the American Meteorological Society, 2017, 98, 1749-1755.	3.3	6
34	A parametrization of subgrid orographic rain enhancement via the seeder–feeder effect. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 132-142.	2.7	4
35	Correction to "Droplet nucleation: Physically-based parameterizations and comparative evaluation― Journal of Advances in Modeling Earth Systems, 2011, 3, .	3.8	1
36	Future Community Efforts in Understanding and Modeling Atmospheric Processes. Bulletin of the American Meteorological Society, 2018, 99, ES159-ES162.	3.3	1

#	Article	IF	CITATIONS
37	Correction to "Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structureâ€∙ Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	0

Progress towards accelerating the unified model on hybrid multi-core systems. , 2021, , .