Paul Gregorevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5945789/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nature Medicine, 2004, 10, 828-834.	15.2	586
2	Suppression of microRNA-29 Expression by TGF-β1 Promotes Collagen Expression and Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2012, 23, 252-265.	3.0	450
3	Extracellular Vesicles Provide a Means for Tissue Crosstalk during Exercise. Cell Metabolism, 2018, 27, 237-251.e4.	7.2	426
4	Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17615-17620.	3.3	391
5	Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8372-E8381.	3.3	361
6	rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nature Medicine, 2006, 12, 787-789.	15.2	274
7	TGF-β Regulates miR-206 and miR-29 to Control Myogenic Differentiation through Regulation of HDAC4. Journal of Biological Chemistry, 2011, 286, 13805-13814.	1.6	237
8	Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Molecular Therapy, 2004, 10, 671-678.	3.7	218
9	Sustained AAV-mediated Dystrophin Expression in a Canine Model of Duchenne Muscular Dystrophy with a Brief Course of Immunosuppression. Molecular Therapy, 2007, 15, 1160-1166.	3.7	207
10	<i>miR-21</i> promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clinical Science, 2015, 129, 1237-1249.	1.8	192
11	Design of Tissue-specific Regulatory Cassettes for High-level rAAV-mediated Expression in Skeletal and Cardiac Muscle. Molecular Therapy, 2007, 15, 320-329.	3.7	180
12	Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. Journal of Cell Biology, 2012, 197, 997-1008.	2.3	167
13	The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. Journal of Cell Biology, 2013, 203, 345-357.	2.3	166
14	Elevated expression of activins promotes muscle wasting and cachexia. FASEB Journal, 2014, 28, 1711-1723.	0.2	163
15	TGFβ and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends in Endocrinology and Metabolism, 2014, 25, 464-471.	3.1	144
16	Immunity to Adeno-Associated Virus-Mediated Gene Transfer in a Random-Bred Canine Model of Duchenne Muscular Dystrophy. Human Gene Therapy, 2007, 18, 18-26.	1.4	129
17	The Hippo pathway effector YAP is a critical regulator of skeletal muscle fibre size. Nature Communications, 2015, 6, 6048.	5.8	128
18	Systemic Administration of Micro-dystrophin Restores Cardiac Geometry and Prevents Dobutamine-induced Cardiac Pump Failure. Molecular Therapy, 2007, 15, 1086-1092.	3.7	123

#	Article	IF	CITATIONS
19	Targeting of Fn14 Prevents Cancer-Induced Cachexia and Prolongs Survival. Cell, 2015, 162, 1365-1378.	13.5	121
20	Phosphoinositide 3-Kinase p110α Is a Master Regulator of Exercise-Induced Cardioprotection and PI3K Gene Therapy Rescues Cardiac Dysfunction. Circulation: Heart Failure, 2012, 5, 523-534.	1.6	115
21	ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling. Journal of Clinical Investigation, 2013, 123, 4255-4263.	3.9	113
22	Systemic Microdystrophin Gene Delivery Improves Skeletal Muscle Structure and Function in Old Dystrophic mdx Mice. Molecular Therapy, 2008, 16, 657-664.	3.7	109
23	Improved Contractile Function of the mdx Dystrophic Mouse Diaphragm Muscle after Insulin-Like Growth Factor-I Administration. American Journal of Pathology, 2002, 161, 2263-2272.	1.9	107
24	Microutrophin Delivery Through rAAV6 Increases Lifespan and Improves Muscle Function in Dystrophic Dystrophin/Utrophin-deficient Mice. Molecular Therapy, 2008, 16, 1539-1545.	3.7	107
25	β2-Agonist administration reverses muscle wasting and improves muscle function in aged rats. Journal of Physiology, 2004, 555, 175-188.	1.3	91
26	In Vivoandin VitroCorrection of themdxDystrophin Gene Nonsense Mutation by Short-Fragment Homologous Replacement. Human Gene Therapy, 2001, 12, 629-642.	1.4	90
27	Viral-mediated gene therapy for the muscular dystrophies: Successes, limitations and recent advances. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 243-262.	1.8	90
28	Specific targeting of TGF-Î ² family ligands demonstrates distinct roles in the regulation of muscle mass in health and disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5266-E5275.	3.3	90
29	IGF-I treatment improves the functional properties of fast- and slow-twitch skeletal muscles from dystrophic mice. Neuromuscular Disorders, 2001, 11, 260-268.	0.3	86
30	Gene Therapy of mdx Mice With Large Truncated Dystrophins Generated by Recombination Using rAAV6. Molecular Therapy, 2011, 19, 36-45.	3.7	86
31	β2-Adrenoceptor agonist fenoterol enhances functional repair of regenerating rat skeletal muscle after injury. Journal of Applied Physiology, 2004, 96, 1385-1392.	1.2	80
32	Immunity to Adeno-Associated Virus-Mediated Gene Transfer in a Random-Bred Canine Model of Duchenne Muscular Dystrophy. Human Gene Therapy, 2006, .	1.4	77
33	Gene Therapy Strategies for Duchenne Muscular Dystrophy Utilizing Recombinant Adeno-associated Virus Vectors. Molecular Therapy, 2006, 13, 241-249.	3.7	75
34	Therapeutic silencing of miRâ€652 restores heart function and attenuates adverse remodeling in a setting of established pathological hypertrophy. FASEB Journal, 2014, 28, 5097-5110.	0.2	74
35	The calcineurin signal transduction pathway is essential for successful muscle regeneration in mdx dystrophic mice. Acta Neuropathologica, 2004, 107, 299-310.	3.9	73
36	Functional Deficits in nNOSμ-Deficient Skeletal Muscle: Myopathy in nNOS Knockout Mice. PLoS ONE, 2008, 3, e3387.	1.1	71

#	Article	IF	CITATIONS
37	miR-206 Represses Hypertrophy of Myogenic Cells but Not Muscle Fibers via Inhibition of HDAC4. PLoS ONE, 2013, 8, e73589.	1.1	71
38	<i>Smad7</i> gene delivery prevents muscle wasting associated with cancer cachexia in mice. Science Translational Medicine, 2016, 8, 348ra98.	5.8	70
39	Disruption of the Class IIa HDAC Corepressor Complex Increases Energy Expenditure and Lipid Oxidation. Cell Reports, 2016, 16, 2802-2810.	2.9	68
40	Silencing of miR-34a Attenuates Cardiac Dysfunction in a Setting of Moderate, but Not Severe, Hypertrophic Cardiomyopathy. PLoS ONE, 2014, 9, e90337.	1.1	67
41	Hyperbaric oxygen modulates antioxidant enzyme activity in rat skeletal muscles. European Journal of Applied Physiology, 2001, 86, 24-27.	1.2	64
42	Phenotypic Improvement of Dystrophic Muscles by rAAV/Microdystrophin Vectors Is Augmented by Igf1 Codelivery. Molecular Therapy, 2005, 12, 441-450.	3.7	64
43	rAAV6â€Microdystrophin Rescues Aberrant Golgi Complex Organization in <i>mdx </i> Skeletal Muscles. Traffic, 2007, 8, 1424-1439.	1.3	63
44	Differential Effects of IL6 and Activin A in the Development of Cancer-Associated Cachexia. Cancer Research, 2016, 76, 5372-5382.	0.4	62
45	Activin Signaling Regulates Sertoli Cell Differentiation and Function. Endocrinology, 2012, 153, 6065-6077.	1.4	61
46	β2-Agonist fenoterol has greater effects on contractile function of rat skeletal muscles than clenbuterol. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1386-R1394.	0.9	60
47	Dystrophin Delivery to Muscles of mdx Mice Using Lentiviral Vectors Leads to Myogenic Progenitor Targeting and Stable Gene Expression. Molecular Therapy, 2010, 18, 206-213.	3.7	60
48	Perturbed BMP signaling and denervation promote muscle wasting in cancer cachexia. Science Translational Medicine, 2021, 13, .	5.8	58
49	The TGF-β Signalling Network in Muscle Development, Adaptation and Disease. Advances in Experimental Medicine and Biology, 2016, 900, 97-131.	0.8	56
50	Treatment of type 2 diabetes with the designer cytokine IC7Fc. Nature, 2019, 574, 63-68.	13.7	55
51	Interleukin-15 Administration Improves Diaphragm Muscle Pathology and Function in Dystrophic mdx Mice. American Journal of Pathology, 2005, 166, 1131-1141.	1.9	52
52	Administration of insulin-like growth factor-I improves fatigue resistance of skeletal muscles from dystrophicmdx mice. Muscle and Nerve, 2004, 30, 295-304.	1.0	50
53	Functional capacity of dystrophins carrying deletions in the N-terminal actin-binding domain. Human Molecular Genetics, 2007, 16, 2105-2113.	1.4	49
54	Phosphoinositide 3-kinase (p110α) gene delivery limits diabetes-induced cardiac NADPH oxidase and cardiomyopathy in a mouse model with established diastolic dysfunction. Clinical Science, 2017, 131, 1345-1360.	1.8	49

#	Article	IF	CITATIONS
55	The Hippo Signaling Pathway in the Regulation of Skeletal Muscle Mass and Function. Exercise and Sport Sciences Reviews, 2018, 46, 92-96.	1.6	48
56	Deficiency in Apoptosis-Inducing Factor Recapitulates Chronic Kidney Disease via Aberrant Mitochondrial Homeostasis. Diabetes, 2016, 65, 1085-1098.	0.3	47
57	Mechanisms involved in follistatinâ€induced hypertrophy and increased insulin action in skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 1241-1257.	2.9	47
58	Fine-tuning the cardiac O-GlcNAcylation regulatory enzymes governs the functional and structural phenotype of the diabetic heart. Cardiovascular Research, 2022, 118, 212-225.	1.8	47
59	Development of Novel Activin-Targeted Therapeutics. Molecular Therapy, 2015, 23, 434-444.	3.7	46
60	Sex-Specific Control of Human Heart Maturation by the Progesterone Receptor. Circulation, 2021, 143, 1614-1628.	1.6	42
61	Leukemia inhibitory factor ameliorates muscle fiber degeneration in the mdx mouse. Muscle and Nerve, 2000, 23, 1700-1705.	1.0	41
62	Regulation of Tissue Growth by the Mammalian Hippo Signaling Pathway. Frontiers in Physiology, 2017, 8, 942.	1.3	39
63	Evaluation of Vascular Delivery Methodologies to Enhance rAAV6-mediated Gene Transfer to Canine Striated Musculature. Molecular Therapy, 2009, 17, 1427-1433.	3.7	38
64	Onset of Experimental Severe Cardiac Fibrosis Is Mediated by Overexpression of Angiotensin-Converting Enzyme 2. Hypertension, 2009, 53, 694-700.	1.3	38
65	Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass. JCI Insight, 2016, 1, .	2.3	38
66	Fluorophoreâ€ l abeled myosinâ€specific antibodies simplify muscleâ€fiber phenotyping. Muscle and Nerve, 2008, 37, 104-106.	1.0	34
67	Gene therapy targeting cardiac phosphoinositide 3-kinase (p110α) attenuates cardiac remodeling in type 2 diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H840-H852.	1.5	32
68	Integrated Glycoproteomics Identifies a Role of N-Glycosylation and Galectin-1 on Myogenesis and Muscle Development. Molecular and Cellular Proteomics, 2021, 20, 100030.	2.5	31
69	Molecular characterization of latent GDF8 reveals mechanisms of activation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E866-E875.	3.3	30
70	Redox modulation of maximum force production of fast-and slow-twitch skeletal muscles of rats and mice. Journal of Applied Physiology, 2001, 90, 832-838.	1.2	29
71	Evaluation of follistatin as a therapeutic in models of skeletal muscle atrophy associated with denervation and tenotomy. Scientific Reports, 2015, 5, 17535.	1.6	29
72	Hyperbaric oxygen improves contractile function of regenerating rat skeletal muscle after myotoxic injury. Journal of Applied Physiology, 2000, 89, 1477-1482.	1.2	26

#	Article	IF	CITATIONS
73	Gene therapy for muscular dystrophy – a review ofpromising progress. Expert Opinion on Biological Therapy, 2003, 3, 803-814.	1.4	26
74	Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration. Journal of Physiology, 2004, 558, 549-560.	1.3	26
75	Chronic β-agonist administration affects cardiac function of adult but not old rats, independent of β-adrenoceptor density. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H344-H349.	1.5	26
76	Effects of leukemia inhibitory factor on rat skeletal muscles are modulated by clenbuterol. Muscle and Nerve, 2002, 25, 194-201.	1.0	23
77	Generation of a Specific Activin Antagonist by Modification of the Activin A Propeptide. Endocrinology, 2011, 152, 3758-3768.	1.4	23
78	Using AAV vectors expressing the \hat{l}^22 -adrenoceptor or associated $\hat{Gl_{\pm}}$ proteins to modulate skeletal muscle mass and muscle fibre size. Scientific Reports, 2016, 6, 23042.	1.6	23
79	Induction of experimental autoimmune orchitis in mice: responses to elevated circulating levels of the activin-binding protein, follistatin. Reproduction, 2017, 154, 293-305.	1.1	23
80	Modulating myosin restores muscle function in a mouse model of nemaline myopathy. Annals of Neurology, 2016, 79, 717-725.	2.8	22
81	Gene therapy for muscular dystrophy ? a review of promising progress. Expert Opinion on Biological Therapy, 2003, 3, 803-814.	1.4	22
82	Generation of MicroRNA-34 Sponges and Tough Decoys for the Heart: Developments and Challenges. Frontiers in Pharmacology, 2018, 9, 1090.	1.6	21
83	Abnormal Mitochondrial L-Arginine Transport Contributes to the Pathogenesis of Heart Failure and Rexoygenation Injury. PLoS ONE, 2014, 9, e104643.	1.1	19
84	Glucose-6-phosphate dehydrogenase contributes to the regulation of glucose uptake in skeletal muscle. Molecular Metabolism, 2016, 5, 1083-1091.	3.0	19
85	The E3 ligase MARCH5 is a PPARÎ ³ target gene that regulates mitochondria and metabolism in adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E293-E304.	1.8	19
86	Skeletal muscleâ€specific overexpression of heat shock protein 72 improves skeletal muscle insulinâ€stimulated glucose uptake but does not alter whole body metabolism. Diabetes, Obesity and Metabolism, 2018, 20, 1928-1936.	2.2	18
87	Yap regulates skeletal muscle fatty acid oxidation and adiposity in metabolic disease. Nature Communications, 2021, 12, 2887.	5.8	18
88	Hyperbaric oxygen increases the contractile function of regenerating rat slow muscles. Medicine and Science in Sports and Exercise, 2002, 34, 630-636.	0.2	17
89	Gene delivery of medium chain acyl-coenzyme A dehydrogenase induces physiological cardiac hypertrophy and protects against pathological remodelling. Clinical Science, 2018, 132, 381-397.	1.8	17
90	The Effect of ACTN3 Gene Doping on Skeletal Muscle Performance. American Journal of Human Genetics, 2018, 102, 845-857.	2.6	17

#	Article	IF	CITATIONS
91	Activin A–Induced Cachectic Wasting Is Attenuated by Systemic Delivery of Its Cognate Propeptide in Male Mice. Endocrinology, 2019, 160, 2417-2426.	1.4	17
92	Specific Force of the Rat Extraocular Muscles, Levator and Superior Rectus, Measured In Situ. Journal of Neurophysiology, 2001, 85, 1027-1032.	0.9	16
93	Dynamic Changes to the Skeletal Muscle Proteome and Ubiquitinome Induced by the E3 Ligase, ASB2β. Molecular and Cellular Proteomics, 2021, 20, 100050.	2.5	16
94	Viral vectors for gene transfer to striated muscle. Current Opinion in Molecular Therapeutics, 2004, 6, 491-8.	2.8	16
95	Phosphorylation within the cysteine-rich region of dystrophin enhances its association with β-dystroglycan and identifies a potential novel therapeutic target for skeletal muscle wasting. Human Molecular Genetics, 2014, 23, 6697-6711.	1.4	14
96	The regulation of polyamine pathway proteins in models of skeletal muscle hypertrophy and atrophy: a potential role for mTORC1. American Journal of Physiology - Cell Physiology, 2021, 320, C987-C999.	2.1	14
97	Functional properties of regenerating skeletal muscle following LIF administration. Muscle and Nerve, 2000, 23, 1586-1588.	1.0	13
98	Endurance training adaptations modulate the redox-force relationship of rat isolated slow-twitch skeletal muscles. Clinical and Experimental Pharmacology and Physiology, 2003, 30, 77-81.	0.9	13
99	Functional β-Adrenoceptors Are Important for Early Muscle Regeneration in Mice through Effects on Myoblast Proliferation and Differentiation. PLoS ONE, 2014, 9, e101379.	1.1	13
100	Forced expression of muscle specific kinase slows postsynaptic acetylcholine receptor loss in a mouse model of MuSK myasthenia gravis. Physiological Reports, 2015, 3, e12658.	0.7	13
101	Loss of the long non-coding RNA OIP5-AS1 exacerbates heart failure in a sex-specific manner. IScience, 2021, 24, 102537.	1.9	12
102	Preclinical Studies for Gene Therapy of Duchenne Muscular Dystrophy. Journal of Child Neurology, 2010, 25, 1149-1157.	0.7	11
103	The atypical â€~b' splice variant of phospholipase Cβ1 promotes cardiac contractile dysfunction. Journal of Molecular and Cellular Cardiology, 2015, 84, 95-103.	0.9	11
104	Skeletal muscle-specific overexpression of IGFBP-2 promotes a slower muscle phenotype in healthy but not dystrophic mdx mice and does not affect the dystrophic pathology. Growth Hormone and IGF Research, 2016, 30-31, 1-10.	0.5	11
105	Muscle specific kinase protects dystrophic <i>mdx</i> mouse muscles from eccentric contractionâ€induced loss of forceâ€producing capacity. Journal of Physiology, 2019, 597, 4831-4850.	1.3	11
106	Intravascular Follistatin gene delivery improves glycemic control in a mouse model of type 2 diabetes. FASEB Journal, 2020, 34, 5697-5714.	0.2	10
107	Hyperbaric oxygen increases the contractile function of regenerating rat slow muscles. Medicine and Science in Sports and Exercise, 2002, 34, 630-636.	0.2	10
108	Transduction of Skeletal Muscles with Common Reporter Genes Can Promote Muscle Fiber Degeneration and Inflammation. PLoS ONE, 2012, 7, e51627.	1.1	9

#	Article	IF	CITATIONS
109	Site-Specific Glycation and Chemo-enzymatic Antibody Sortagging for the Retargeting of rAAV6 to Inflamed Endothelium. Molecular Therapy - Methods and Clinical Development, 2019, 14, 261-269.	1.8	9
110	Bone Morphogenetic Protein 7 Gene Delivery Improves Cardiac Structure and Function in a Murine Model of Diabetic Cardiomyopathy. Frontiers in Pharmacology, 2021, 12, 719290.	1.6	8
111	<i>ACTN3</i> genotype influences skeletal muscle mass regulation and response to dexamethasone. Science Advances, 2021, 7, .	4.7	7
112	Bone Geometry Is Altered by Follistatinâ€Induced Muscle Growth in Young Adult Male Mice. JBMR Plus, 2021, 5, e10477.	1.3	6
113	TMEPAI/PMEPA1 Is a Positive Regulator of Skeletal Muscle Mass. Frontiers in Physiology, 2020, 11, 560225.	1.3	5
114	Phosphorylation of ERK and dystrophin S3059 protects against inflammation-associated C2C12 myotube atrophy. American Journal of Physiology - Cell Physiology, 2021, 320, C956-C965.	2.1	5
115	Tissue-specific expression of Cas9 has no impact on whole-body metabolism in four transgenic mouse lines. Molecular Metabolism, 2021, 53, 101292.	3.0	5
116	Functional Enhancement of Skeletal Muscle by Gene Transfer. Physical Medicine and Rehabilitation Clinics of North America, 2005, 16, 875-887.	0.7	3
117	Old Drug, New Trick: Tilorone, a Broad-Spectrum Antiviral Drug as a Potential Anti-Fibrotic Therapeutic for the Diseased Heart. Pharmaceuticals, 2021, 14, 263.	1.7	3
118	Mechanisms of chemotherapyâ€induced muscle wasting in mice with cancer cachexia. JCSM Rapid Communications, 2022, 5, 102-116.	0.6	3
119	Lentiviral transduction of rat Sertoli cells as a means to modify gene expression. Spermatogenesis, 2012, 2, 279-284.	0.8	2
120	The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. Journal of Experimental Medicine, 2013, 210, 21012OIA54.	4.2	1
121	A Step-By-Step Method to Detect Neutralizing Antibodies Against AAV using a Colorimetric Cell-Based Assay. Journal of Visualized Experiments, 2021, , .	0.2	1
122	Erratum to "Efficient Transduction of Skeletal Muscle Using Vectors Based on Adeno-associated Virus Serotype 6― Molecular Therapy, 2009, 17, 1482.	3.7	0
123	LATE BREAKING NEWS E-POSTER PRESENTATION. Neuromuscular Disorders, 2020, 30, S170.	0.3	0
124	Combinatorial Gene Therapy Strategies for Treating Muscular Dystrophies. , 2010, , 117-139.		0
125	Expanding the MuRF1 Universe with Quantitative Ubiquitylomics. Function, 2021, 2, zqab058.	1.1	0

126 Therapeutic Gene Transfer to Skeletal Muscle. , 0, , 123-128.