Akimitsu Okamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5945658/publications.pdf

Version: 2024-02-01

177 papers

6,119 citations

37 h-index

94381

72 g-index

200 all docs

200 docs citations

200 times ranked 5820 citing authors

#	Article	IF	CITATIONS
1	FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Research, 2014, 24, 1403-1419.	5.7	869
2	Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7856-7861.	3.3	402
3	Pyrene-Labeled Base-Discriminating Fluorescent DNA Probes for Homogeneous SNP Typing. Journal of the American Chemical Society, 2004, 126, 4820-4827.	6.6	267
4	DNA Logic Gates. Journal of the American Chemical Society, 2004, 126, 9458-9463.	6.6	229
5	Degradation of DNA by bisulfite treatment. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1912-1915.	1.0	209
6	Design of base-discriminating fluorescent nucleosides. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2005, 6, 108-122.	5.6	181
7	Pyrene-Labeled Oligodeoxynucleotide Probe for Detecting Base Insertion by Excimer Fluorescence Emission. Journal of the American Chemical Society, 2004, 126, 8364-8365.	6.6	151
8	ECHO probes: a concept of fluorescence control for practical nucleic acid sensing. Chemical Society Reviews, 2011, 40, 5815.	18.7	139
9	Design of Base-Discriminating Fluorescent Nucleoside and Its Application to T/C SNP Typing. Journal of the American Chemical Society, 2003, 125, 9296-9297.	6.6	126
10	Clear Distinction of Purine Bases on the Complementary Strand by a Fluorescence Change of a Novel Fluorescent Nucleoside. Journal of the American Chemical Society, 2003, 125, 4972-4973.	6.6	123
11	PRODAN-Conjugated DNA:Â Synthesis and Photochemical Properties. Journal of the American Chemical Society, 2007, 129, 4776-4784.	6.6	99
12	Excitonâ€Controlled Hybridizationâ€Sensitive Fluorescent Probes: Multicolor Detection of Nucleic Acids. Angewandte Chemie - International Edition, 2009, 48, 6480-6484.	7.2	98
13	Public-key system using DNA as a one-way function for key distribution. BioSystems, 2005, 81, 25-29.	0.9	91
14	Direct Labeling of 5-Methylcytosine and Its Applications. Journal of the American Chemical Society, 2007, 129, 5612-5620.	6.6	88
15	Hybridizationâ€6ensitive On–Off DNA Probe: Application of the Exciton Coupling Effect to Effective Fluorescence Quenching. Chemistry - an Asian Journal, 2008, 3, 958-968.	1.7	88
16	DNA Hole Transport on an Electrode:Â Application to Effective Photoelectrochemical SNP Typing. Journal of the American Chemical Society, 2006, 128, 658-662.	6.6	87
17	Monitoring DNA Structures by Dual Fluorescence of Pyrene Derivatives. Journal of the American Chemical Society, 2005, 127, 13128-13129.	6.6	83
18	Rational Design of a DNA Wire Possessing an Extremely High Hole Transport Ability. Journal of the American Chemical Society, 2003, 125, 5066-5071.	6.6	80

#	Article	IF	CITATIONS
19	An Osmiumâ^'DNA Interstrand Complex:  Application to Facile DNA Methylation Analysis. Journal of the American Chemical Society, 2007, 129, 14511-14517.	6.6	79
20	Photostimulated Hole Transport through a DNA Duplex Immobilized on a Gold Electrode. Journal of the American Chemical Society, 2004, 126, 14732-14733.	6.6	75
21	Nile Red Nucleoside:Â Design of a Solvatofluorochromic Nucleoside as an Indicator of Micropolarity around DNA. Journal of Organic Chemistry, 2006, 71, 3592-3598.	1.7	69
22	Sequence Dependence of Fluorescence Emission and Quenching of Doubly Thiazole Orange Labeled DNA: Effective Design of a Hybridization-Sensitive Probe. Bioconjugate Chemistry, 2008, 19, 1719-1725.	1.8	62
23	Base-discriminating fluorescent (BDF) nucleoside: distinction of thymine by fluorescence quenchingElectronic supplementary information (ESI) available: Experimental procedures for new compounds, UV and excitation spectra. See http://www.rsc.org/suppdata/cc/b4/b405832a/. Chemical Communications, 2004, 1704.	2.2	59
24	Fluorometric sensing of the salt-induced B–Z DNA transition by combination of two pyrene-labeled nucleobases. Chemical Communications, 2005, , 1128-1130.	2.2	56
25	Synthesis and properties of a novel fluorescent nucleobase, naphthopyridopyrimidine. Tetrahedron Letters, 2003, 44, 6871-6874.	0.7	55
26	Cytosine Detection by a Fluorescein-Labeled Probe Containing Base-Discriminating Fluorescent Nucleobase. ChemBioChem, 2004, 5, 958-963.	1.3	55
27	Phototriggered Drug Release from Functionalized Oligonucleotides by a Molecular Beacon Strategy. Angewandte Chemie - International Edition, 2003, 42, 2502-2504.	7.2	53
28	Stable, Specific, and Reversible Base Pairing via Schiff Base. Journal of the American Chemical Society, 2005, 127, 16681-16684.	6.6	52
29	Sequence-selective osmium oxidation of DNA: efficient distinction between 5-methylcytosine and cytosine. Organic and Biomolecular Chemistry, 2006, 4, 1638.	1.5	50
30	Simple SNP typing assay using a base-discriminating fluorescent probe. Molecular BioSystems, 2006, 2, 122.	2.9	50
31	Site-Specific Discrimination of Cytosine and 5-Methylcytosine in Duplex DNA by Peptide Nucleic Acids. Journal of the American Chemical Society, 2002, 124, 10262-10263.	6.6	45
32	Chemical approach toward efficient DNA methylation analysis. Organic and Biomolecular Chemistry, 2009, 7, 21-26.	1.5	45
33	Hybridization-Sensitive Fluorescent Probe for Long-Term Monitoring of Intracellular RNA. Bioconjugate Chemistry, 2009, 20, 1256-1261.	1.8	43
34	Doubly Thiazole Orange-Labeled DNA for Live Cell RNA Imaging. Bulletin of the Chemical Society of Japan, 2009, 82, 110-117.	2.0	40
35	6-Endo- and 5-exo-digonal cyclizations of o-hydroxyphenyl ethynyl ketones: A key step for highly selective benzopyranone formation. Tetrahedron, 1996, 52, 9427-9446.	1.0	39
36	Nitroxide-labeled guanine as an ESR spin probe for structural study of DNA. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3415-3418.	1.0	39

#	Article	IF	CITATIONS
37	A quick and simple FISH protocol with hybridization-sensitive fluorescent linear oligodeoxynucleotide probes. Rna, 2012, 18, 166-175.	1.6	38
38	ECHO-liveFISH: <i>iin vivo</i> RNA labeling reveals dynamic regulation of nuclear RNA foci in living tissues. Nucleic Acids Research, 2015, 43, e126-e126.	6.5	38
39	Electrochemical Evaluation of Alternating Duplexâ^'Triplex Conversion Effect on the Anthraquinone-Photoinjected Hole Transport through DNA Duplex Immobilized on a Gold Electrode. Journal of the American Chemical Society, 2006, 128, 692-693.	6.6	37
40	A Dielectric-Sensitive Fluorescent DNA Probe for Monitoring Polarities on the Interior of a DNA-Binding Protein. Bioconjugate Chemistry, 2005, 16, 1105-1111.	1.8	36
41	Synthesis and fluorescence properties of dimethylaminonaphthalene–deoxyuridine conjugates as polarity-sensitive probes. Tetrahedron, 2007, 63, 3465-3470.	1.0	36
42	Highly Selective DNA Alkylation at the 5†Side G of a 5†GG3†Sequence by an Aglycon Model of Pluramycin Antibiotics through Preferential Intercalation into the GG Step. Journal of the American Chemical Society, 1998, 120, 11219-11225.	6.6	35
43	Sets of RNA Repeated Tags and Hybridization-Sensitive Fluorescent Probes for Distinct Images of RNA in a Living Cell. PLoS ONE, 2010, 5, e13003.	1.1	35
44	Hydroxyapatite: catalyst for a one-pot pentose formation. Organic and Biomolecular Chemistry, 2017, 15, 8888-8893.	1.5	34
45	Highly Efficient Synthesis of 2-Substituted 4H-Chromen-4-ones by means of FInduced 6-Endo-Digonal Cyclization of o-(Silyloxy)phenyl Ethynyl Ketone Derivatives. Journal of Organic Chemistry, 1994, 59, 4360-4361.	1.7	33
46	Synthesis and Properties of Peptide Nucleic Acids Containing a Psoralen Unit. Organic Letters, 2001, 3, 925-927.	2.4	32
47	Synthesis and properties of novel base-discriminating fluorescent (BDF) nucleosides: a highly polarity-sensitive fluorophore for SNP typing. Tetrahedron Letters, 2004, 45, 7827-7831.	0.7	32
48	Sequence-specific microscopic visualization of DNA methylation status at satellite repeats in individual cell nuclei and chromosomes. Nucleic Acids Research, 2013, 41, e186-e186.	6.5	32
49	Synthesis and properties of purine-type base-discriminating fluorescent (BDF) nucleosides: distinction of thymine by fluorescence-labeled deoxyadenosine derivatives. Tetrahedron Letters, 2005, 46, 7605-7608.	0.7	30
50	Triple Function of 4â€Mercaptophenylacetic Acid Promotes Oneâ€Pot Multiple Peptide Ligation. Angewandte Chemie - International Edition, 2018, 57, 16533-16537.	7.2	30
51	A facile incorporation of the aldehyde function into DNA: 3-formylindole nucleoside as an aldehyde-containing universal nucleoside. Tetrahedron Letters, 2002, 43, 4581-4583.	0.7	29
52	Synthesis and ESR studies of nitronyl nitroxide-tethered oligodeoxynucleotides. Tetrahedron Letters, 2005, 46, 791-795.	0.7	29
53	Specific Alkylation of Guanine Opposite to a Single Nucleotide Bulge: A Chemical Probe for the Bulged Structure of DNA. Angewandte Chemie - International Edition, 1999, 38, 3378-3381.	7.2	27
54	Practical formula for Mach number probe diagnostics in weakly magnetized plasmas. Physics of Plasmas, 2005, 12, 044504.	0.7	27

#	Article	IF	CITATIONS
55	Exciton Primer-mediated SNP detection in SmartAmp2 reactions. Human Mutation, 2010, 31, 208-217.	1.1	27
56	Chemically-activatable alkyne-tagged probe for imaging microdomains in lipid bilayer membranes. Scientific Reports, 2017, 7, 41007.	1.6	26
57	Synthesis and characterization of the 5-methyl-2′-deoxycytidine glycol–dioxoosmium–bipyridine ternary complex in DNA. Organic and Biomolecular Chemistry, 2008, 6, 269-271.	1.5	25
58	ECHO probes: Fluorescence emission control for nucleic acid imaging. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, 112-123.	5 . 6	25
59	N5-CAIR Mutase: Role of a CO2Binding Site and Substrate Movement in Catalysisâ€,‡. Biochemistry, 2007, 46, 2842-2855.	1.2	23
60	Efficient peptide ligation between allyl-protected Asp and Cys followed by palladium-mediated deprotection. Chemical Communications, 2018, 54, 4337-4340.	2.2	22
61	5-Hydroxymethylcytosine-selective oxidation with peroxotungstate. Chemical Communications, 2011, 47, 11231.	2.2	21
62	Hybridization-sensitive fluorescence control in the near-infrared wavelength range. Organic and Biomolecular Chemistry, 2011, 9, 4199.	1.5	21
63	Base-Resolution Analysis of 5-Hydroxymethylcytosine by One-Pot Bisulfite-Free Chemical Conversion with Peroxotungstate. Journal of the American Chemical Society, 2016, 138, 14178-14181.	6.6	21
64	In vitro and in cell analysis of chemically synthesized histone H2A with multiple modifications. Chemical Communications, 2016, 52, 4999-5002.	2.2	21
65	Regulation of the Stability of the Histone H2A–H2B Dimer by H2A Tyr57 Phosphorylation. Biochemistry, 2017, 56, 4767-4772.	1.2	21
66	Photoresponsive tandem zinc finger peptide. Chemical Communications, 2009, , 1906.	2,2	20
67	ECHO-LNA Conjugates: Hybridization-Sensitive Fluorescence and Its Application to Fluorescent Detection of Various RNA Strands. Bioconjugate Chemistry, 2010, 21, 2276-2281.	1.8	20
68	Hybridization-sensitive fluorescent DNAprobe with self-avoidance ability. Organic and Biomolecular Chemistry, 2010, 8, 546-551.	1.5	20
69	Detection of A/G Single Nucleotide Alteration in RNA Using Base-discriminating Fluorescent Oligodeoxynucleotides. Chemistry Letters, 2003, 32, 684-685.	0.7	19
70	Methylcytosine-selective fluorescence quenching by osmium complexation. Bioorganic and Medicinal Chemistry, 2007, 15, 1615-1621.	1.4	19
71	Diazirine Photocrosslinking Recruits Activated FTO Demethylase Complexes for Specific <i>N</i> ⁶ -methyladenosine Recognition. ACS Chemical Biology, 2015, 10, 1450-1455.	1.6	19
72	Synthesis of an ABC Ring Analogue of Kapurimycin A3 as an Effective DNA Alkylating Agent. Angewandte Chemie International Edition in English, 1997, 36, 2794-2797.	4.4	18

#	Article	IF	CITATIONS
73	Phototriggered Drug Release from Functionalized Oligonucleotides by a Molecular Beacon Strategy. Angewandte Chemie, 2003, 115, 2606-2608.	1.6	18
74	Excitonic interaction: another photophysical process for fluorescenceâ€controlled nucleic acid sensing. Chemical Record, 2010, 10, 188-196.	2.9	18
75	Characterization of the Triplet State of Hybridization-Sensitive DNA Probe by Using Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry A, 2013, 117, 27-33.	1.1	18
76	Design and Synthesis of Caged Fluorescent Nucleotides and Application to Liveâ€cell RNA Imaging. ChemBioChem, 2011, 12, 2871-2880.	1.3	17
77	Chemical Synthesis of Cys-Containing Protein via Chemoselective Deprotection with Different Palladium Complexes. Organic Letters, 2019, 21, 8378-8382.	2.4	17
78	Synthesis of an artificial hole-transporting nucleoside triphosphate, dMDATP, and its enzymatic incorporation into DNA. Bioorganic and Medicinal Chemistry, 2004, 12, 5875-5880.	1.4	16
79	Facile synthesis of hydroxymethylcytosine-containing oligonucleotides and their reactivity upon osmium oxidation. Organic and Biomolecular Chemistry, 2011, 9, 4176.	1.5	16
80	2-Amino-7-deazaadenine forms stable base pairs with cytosine and thymine. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 97-99.	1.0	15
81	Oligonucleotides containing 7-vinyl-7-deazaguanine as a facile strategy for expanding the functional diversity of DNA. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1895-1896.	1.0	15
82	15N NMR Study on Site-Selective Binding of Metal Ions to Guanine Runs in DNA:Â A Good Correlation with HOMO Distribution. Journal of the American Chemical Society, 2003, 125, 1172-1173.	6.6	15
83	A novel fluorescent guanine derivative distinguishable of three structures, single strand, duplex, and quadruplex. Tetrahedron Letters, 2004, 45, 6059-6062.	0.7	15
84	Osmium Complexation of Mismatched DNA: Effect of the Bases Adjacent to Mismatched 5-Methylcytosine. Bioconjugate Chemistry, 2009, 20, 603-607.	1.8	15
85	Whole-Mount MeFISH: A Novel Technique for Simultaneous Visualization of Specific DNA Methylation and Protein/RNA Expression. PLoS ONE, 2014, 9, e95750.	1.1	15
86	<i>anti–syn</i> Unnatural Base Pair Enables Alphabet-Expanded DNA Self-Assembly. Journal of the American Chemical Society, 2021, 143, 14207-14217.	6.6	15
87	Synthesis and duplex stability of oligonucleotides containing 7-vinyl-7-deazaguanine as a strong electron-donating nucleobase. Tetrahedron Letters, 2000, 41, 10035-10039.	0.7	14
88	pH-dependent fluorescence of uncharged benzothiazole-based dyes binding to DNA. Photochemical and Photobiological Sciences, 2007, 6, 1197-1201.	1.6	14
89	Doubly thiazole orange-labeled cytidine for functional expansion of a hybridization-sensitive probe. Tetrahedron Letters, 2009, 50, 7191-7195.	0.7	14
90	Middle-Down and Chemical Proteomic Approaches to Reveal Histone H4 Modification Dynamics in Cell Cycle. Mass Spectrometry, 2015, 4, A0039-A0039.	0.2	14

#	Article	IF	Citations
91	Floxuridine Oligomers Activated under Hypoxic Environment. Journal of the American Chemical Society, 2021, 143, 3340-3347.	6.6	14
92	A Nucleobase that Releases Reporter Tags upon DNA Oxidation. Journal of the American Chemical Society, 2004, 126, 416-417.	6.6	13
93	Hybridization-Sensitive Fluorescent Oligonucleotide Probe Conjugated with a Bulky Module for Compartment-Specific mRNA Monitoring in a Living Cell. Bioconjugate Chemistry, 2015, 26, 412-417.	1.8	13
94	Chemistryâ€Driven Epigenetic Investigation of Histone and DNA Modifications. Chemical Record, 2018, 18, 1727-1744.	2.9	13
95	Cysteinylprolyl imide (CPI) peptide: a highly reactive and easily accessible crypto-thioester for chemical protein synthesis. Chemical Science, 2019, 10, 5967-5975.	3.7	13
96	Monitoring intracellular metal ion complexation with an acetylene-tagged ligand by Raman spectroscopy. RSC Advances, 2020, 10, 36119-36123.	1.7	13
97	Cy5-Conjugated Hybridization-Sensitive Fluorescent Oligonucleotides for Ratiometric Analysis of Nuclear Poly(A) ⁺ RNA. Bioconjugate Chemistry, 2011, 22, 1625-1630.	1.8	12
98	A nucleic acid probe labeled with desmethyl thiazole orange: a new type of hybridization-sensitive fluorescent oligonucleotide for live-cell RNA imaging. Organic and Biomolecular Chemistry, 2013, 11, 362-371.	1.5	12
99	Design of a pyrene-containing fluorescence probe for labeling of RNA poly(A) tracts. Bioorganic and Medicinal Chemistry, 2008, 16, 400-404.	1.4	11
100	Modulation of remote DNA oxidation by hybridization with peptide nucleic acids (PNA). Bioorganic and Medicinal Chemistry, 2002, 10, 713-718.	1.4	10
101	Modulation of base selectivity for a base-discriminating fluorescent nucleobase by addition of mercury ion. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4279-4281.	1.0	10
102	A Concept of Negative Ion Flow Velocity Measurement Using a Laser Photodetachment Velocimetry (LPDV). Contributions To Plasma Physics, 2006, 46, 367-372.	0.5	10
103	Heterogeneity of osmium oxidation efficiency at consecutive thymines. Organic and Biomolecular Chemistry, 2008, 6, 3905.	1.5	10
104	Probe Design for the Effective Fluorescence Imaging of Intracellular <scp>RNA</scp> . Chemical Record, 2013, 13, 209-217.	2.9	10
105	Chemical synthesis of dual labeled proteins via differently protected alkynes enables intramolecular FRET analysis. Chemical Communications, 2017, 53, 5918-5921.	2.2	10
106	DNA-friendly Cu(<scp>ii</scp>)/TEMPO-catalyzed 5-hydroxymethylcytosine-specific oxidation. Chemical Communications, 2017, 53, 5756-5759.	2.2	10
107	Organoruthenium-catalyzed chemical protein synthesis to elucidate the functions of epigenetic modifications on heterochromatin factors. Chemical Science, 2021, 12, 5926-5937.	3.7	10
108	Glutamine deficiency in solid tumor cells confers resistance to ribosomal RNA synthesis inhibitors. Nature Communications, 2022, 13, .	5.8	10

#	Article	IF	Citations
109	Site-Selective DNA Alkylation of GG Steps by Naphthaldiimide Derivatives Possessing Enantiomeric Epoxide. Organic Letters, 2000, 2, 3249-3251.	2.4	9
110	Synthesis of Highly Functional Nucleic Acids and Their Application to DNA Technology. Bulletin of the Chemical Society of Japan, 2005, 78, 2083-2097.	2.0	9
111	Highly selective fluorescent nucleobases for designing base-discriminating fluorescent probes. Pure and Applied Chemistry, 2006, 78, 2305-2312.	0.9	9
112	Discrimination between 5-hydroxymethylcytosine and 5-methylcytosine by a chemically designed peptide. Chemical Communications, 2011, 47, 8277.	2.2	9
113	Fluorescent triplex-forming DNA oligonucleotides labeled with a thiazole orange dimer unit. Artificial DNA, PNA & XNA, 2013, 4, 19-27.	1.4	9
114	Triple Function of 4â€Mercaptophenylacetic Acid Promotes Oneâ€Pot Multiple Peptide Ligation. Angewandte Chemie, 2018, 130, 16771-16775.	1.6	9
115	Reversible and Photoresponsive Immobilization of Nonadherent Cells by Spiropyran-Conjugated PEG–Lipids. ACS Applied Bio Materials, 2019, 2, 33-38.	2.3	9
116	Toolbox for chemically synthesized histone proteins. Current Opinion in Chemical Biology, 2020, 58, 10-19.	2.8	9
117	DNA–Osmium Complexes: Recent Developments in the Operative Chemical Analysis of DNA Epigenetic Modifications. ChemMedChem, 2014, 9, 1958-1965.	1.6	8
118	Osmium Tag for Postâ€transcriptionally Modified RNA. ChemBioChem, 2018, 19, 1653-1656.	1.3	8
119	Simultaneous and Traceless Ligation of Peptide Fragments on DNA Scaffold. Biomacromolecules, 2019, 20, 1246-1253.	2.6	8
120	Efficient Ketose Production by a Hydroxyapatite Catalyst in a Continuous Flow Module. ACS Sustainable Chemistry and Engineering, 2019, 7, 3372-3377.	3.2	8
121	Single Cell Array Enclosed with a Photodegradable Hydrogel in Microwells for Image-Based Cell Classification and Selective Photorelease of Cells. ACS Applied Bio Materials, 2020, 3, 5887-5895.	2.3	8
122	Ligandâ€Incorporation Site in 5â€Methylcytosineâ€Detection Probe Modulating the Site of Osmium Complexation with the Target DNA. Chemistry and Biodiversity, 2012, 9, 2000-2007.	1.0	7
123	Effects of roughness and temperature on low-energy hydrogen positive and negative ion reflection from silicon and carbon surfaces. Review of Scientific Instruments, 2014, 85, 02C311.	0.6	7
124	Next-generation fluorescent nucleic acids probes for microscopic analysis of intracellular nucleic acids. Applied Microscopy, 2019, 49, 14.	0.8	7
125	Photoactivatable Materials for Versatile Single-Cell Patterning Based on the Photocaging of Cell-Anchoring Moieties through Lipid Self-Assembly. Journal of the American Chemical Society, 2022, 144, 13154-13162.	6.6	7
126	Production of radical species and modification of DNA through one-electron reduction with indium metal. Tetrahedron Letters, 2007, 48, 3167-3169.	0.7	6

#	Article	IF	CITATIONS
127	A Probe Containing Two Base-discriminating Fluorescent (BDF) Nucleosides for SNP Typing. Chemistry Letters, 2010, 39, 116-117.	0.7	6
128	Emission control by binary energy transfer processes on oligouridine. Organic and Biomolecular Chemistry, 2011, 9, 6598.	1.5	6
129	Radiationless deactivation of hybridization-sensitive DNA probe. Journal of Luminescence, 2012, 132, 2566-2571.	1.5	6
130	Unique hole-Trapping property of the degenerate base, 2-amino-7-deazaadenine. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3641-3643.	1.0	5
131	P-loop catalytically assisting the enzymatic cleavage of single-stranded DNA. Bioorganic and Medicinal Chemistry, 2003, 11, 3747-3751.	1.4	5
132	Fmoc-Compatible and C-terminal-Sequence-Independent Peptide Alkyl Thioester Formation Using Cysteinylprolyl Imide. Organic Letters, 2020, 22, 4670-4674.	2.4	5
133	A Light-Inducible Hedgehog Signaling Activator Modulates Proliferation and Differentiation of Neural Cells. ACS Chemical Biology, 2020, 15, 1595-1603.	1.6	5
134	5-Methylcytosine-Selective Osmium Oxidation. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1601-1604.	0.4	4
135	On-Chip DNA Methylation Analysis Using Osmium Complexation. Journal of Nucleic Acids, 2011, 2011, 1-5.	0.8	4
136	Microfluidic preparation of anchored cell membrane sheets for in vitro analyses and manipulation of the cytoplasmic face. Scientific Reports, 2017, 7, 14962.	1.6	4
137	Photophysical properties of fluorescent imaging biological probes of nucleic acids: SAC I and TDâ€DFT Study. Journal of Computational Chemistry, 2019, 40, 127-134.	1.5	4
138	Photo-responsive materials with strong cell trapping ability for light-guided manipulation of nonadherent cells. Biomaterials Science, 2019, 7, 4514-4518.	2.6	4
139	Sterically Bulky Caging of Transferrin for Photoactivatable Intracellular Delivery. Bioconjugate Chemistry, 2021, 32, 1535-1540.	1.8	4
140	Synthesis and Use of Osmium-DNA Complexes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 680-687.	0.0	4
141	Changes of C≡C Triple Bond Vibration that Disclosed Non-Canonical Cytosine Protonation in i-Motif-Forming Oligodeoxynucleotides. ACS Omega, 2021, 6, 31595-31604.	1.6	4
142	Sequence-selective 5-methylcytosine oxidation for epigenotyping. Nucleic Acids Symposium Series, 2005, 49, 45-46.	0.3	3
143	Synthesis of exciton-controlled fluorescent probes for RNA imaging. Nucleic Acids Symposium Series, 2009, 53, 155-156.	0.3	3
144	ICON Probes: Synthesis and DNA Methylation Typing. Current Protocols in Nucleic Acid Chemistry, 2011, 47, Unit 8.7.1-17.	0.5	3

#	Article	IF	CITATIONS
145	Thiazole Orange-Tethered Nucleic Acids and ECHO Probes for Fluorometric Detection of Nucleic Acids. Nucleic Acids and Molecular Biology, 2016, , 63-81.	0.2	3
146	<scp> </scp> -DNA-tagged fluorescence <i>in situ</i> hybridization for highly sensitive imaging of RNAs in single cells. Organic and Biomolecular Chemistry, 2020, 18, 8084-8088.	1.5	3
147	Phosphopeptides Designed for 5-Methylcytosine Recognition. Biochemistry, 2011, 50, 3376-3385.	1.2	2
148	Chemically Activatable Alkyne Tag for Low pH-Enhanced Molecular Labeling on Living Cells. Bioconjugate Chemistry, 2016, 27, 1976-1980.	1.8	2
149	Hybridization-sensitive Fluorescent Oligonucleotide Probe Conjugated with Cell-penetrating Peptides for Enhanced Cellular Uptake. Chemistry Letters, 2017, 46, 1803-1806.	0.7	2
150	Fluorescence-switching RNA for detection of bacterial ribosomes. Chemical Communications, 2017, 53, 9406-9409.	2.2	2
151	A highly constrained nucleic acid analog based on \hat{l}_{\pm} -l-threosamine. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 270-279.	0.4	2
152	Light-inducible control of cellular proliferation and differentiation by a Hedgehog signaling inhibitor. Bioorganic and Medicinal Chemistry, 2021, 38, 116144.	1.4	2
153	Artificial Nucleobases for Hole Transport. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2007, 65, 204-215.	0.0	2
154	Reactivity of Thymine Doublet in Single Strand DNA with Osmium Reagent. Nucleic Acids Symposium Series, 2008, 52, 433-434.	0.3	1
155	Intracellular mRNA imaging with a hybridization sensitive fluorescent nucleotide. Nucleic Acids Symposium Series, 2008, 52, 355-356.	0.3	1
156	Design of a fluorescent probe for DNA/RNA imaging. Nucleic Acids Symposium Series, 2008, 52, 231-232.	0.3	1
157	Exciton-controlled fluorescence: Application to hybridization-sensitive fluorescent DNA probe. Nucleic Acids Symposium Series, 2009, 53, 49-50.	0.3	1
158	Rapid nuclear import of short nucleic acids. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4568-4570.	1.0	1
159	Liveâ€Cell Sensing of Telomerase Activity by Using Hybridizationâ€Sensitive Fluorescent Oligonucleotide Probes. ChemBioChem, 2020, 21, 1022-1027.	1.3	1
160	Base-resolution analysis of 5-hydroxymethylcytidine by selective oxidation and reverse transcription arrest. Organic and Biomolecular Chemistry, 2021, 19, 6478-6486.	1.5	1
161	Silyl-protected propargyl glycine for multiple labeling of peptides by chemoselective silyl-deprotection. Tetrahedron Letters, 2021, 73, 153093.	0.7	1
162	Visualization of Nucleic Acids with Synthetic Exciton-Controlled Fluorescent Oligonucleotide Probes. Methods in Molecular Biology, 2015, 1262, 69-87.	0.4	1

#	Article	IF	CITATIONS
163	Application of Caged Fluorescent Nucleotides to Live-Cell RNA Imaging. Methods in Molecular Biology, 2013, 1039, 303-318.	0.4	1
164	Development of electrochemically gene-analyzing method using DNA-modified electrodes. Nucleic Acids Symposium Series, 2002, 2, 171-172.	0.3	0
165	Synthesis and fluorescence properties of oligonucleotides containing pyrene-dimethylaniline chromophore. Nucleic Acids Symposium Series, 2004, 48, 91-92.	0.3	0
166	Electrochemical behavior of gold electrodes modified with photosensitizer-tethered DNA. Nucleic Acids Symposium Series, 2004, 48, 70-71.	0.3	0
167	Genotyping with hole-transporting DNA self-assembled monolayer. Nucleic Acids Symposium Series, 2005, 49, 227-228.	0.3	0
168	SNPs typing by base-discriminating fluorescence DNA probe. Nucleic Acids Symposium Series, 2005, 49, 201-202.	0.3	0
169	Osmium complex binding to mismatched methylcytosine: effect of adjacent bases. Nucleic Acids Symposium Series, 2009, 53, 207-208.	0.3	0
170	åŒ-å¦ä¿®é£¾æ¸é…¸ã®è¨è¨ メãƒãƒ«åŒ-DNAã®ææå‡ºã,'ä¾∢ã«. Kagaku To Seibutsu, 2010, 48, 138-141.	0.0	0
171	2â€Oxazoline Formation for Selective Chemical Labeling of 5â€Hydroxylysine. Chemistry - an Asian Journal, 2015, 10, 1138-1141.	1.7	0
172	Berichtigung: Triple Function of 4â€Mercaptophenylacetic Acid Promotes Oneâ€Pot Multiple Peptide Ligation. Angewandte Chemie, 2019, 131, 1554-1554.	1.6	0
173	DNA/RNA Fluorescence Imaging by Synthetic Nucleic Acids. Advances in Experimental Medicine and Biology, 2021, 1310, 475-493.	0.8	0
174	Poly(A)+ Sensing of Hybridization-Sensitive Fluorescent Oligonucleotide Probe Characterized by Fluorescence Correlation Methods. International Journal of Molecular Sciences, 2021, 22, 6433.	1.8	0
175	DNA / RNA Imaging with a Photo-Chemically Designed Fluorescent Nucleotide. Seibutsu Butsuri, 2009, 49, 310-313.	0.0	0
176	Nucleic Acid Reaction Chemistry to Clarify the Fluctuating Quality and Quantity of Nucleic Acids. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 474-481.	0.0	0
177	Studies on the mechanism of DNA sequence selective alkylation by kapurimycin A3 analogs. Nucleic Acids Symposium Series, 1997, , 27-8.	0.3	0