
Marc Ongena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5945565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Fengycins and Iturins on <i>Fusarium oxysporum</i> f. sp. <i>physali</i> and Root Colonization by <i>Bacillus velezensis</i> Bs006 Protect Golden Berry Against Vascular Wilt. Phytopathology, 2021, 111, 2227-2237.	2.2	14
2	Bacterial rhamnolipids and their 3-hydroxyalkanoate precursors activate <i>Arabidopsis</i> innate immunity through two independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
3	Surfactin Stimulated by Pectin Molecular Patterns and Root Exudates Acts as a Key Driver of the <i>Bacillus</i> -Plant Mutualistic Interaction. MBio, 2021, 12, e0177421.	4.1	25
4	Biosurfactants in Plant Protection Against Diseases: Rhamnolipids and Lipopeptides Case Study. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1014.	4.1	92
5	Elicitors of Plant Immunity Triggered by Beneficial Bacteria. Frontiers in Plant Science, 2020, 11, 594530.	3.6	77
6	Bacillus Responses to Plant-Associated Fungal and Bacterial Communities. Frontiers in Microbiology, 2020, 11, 1350.	3.5	76
7	Identification of Barley (Hordeum vulgare L. subsp. vulgare) Root Exudates Allelochemicals, Their Autoallelopathic Activity and Against Bromus diandrus Roth. Germination. Agronomy, 2019, 9, 345.	3.0	16
8	Efficacy of Bacillus amyloliquefaciens as biocontrol agent to fight fungal diseases of maize under tropical climates: from lab to field assays in south Kivu. Environmental Science and Pollution Research, 2018, 25, 29808-29821.	5.3	17
9	Synthetic Rhamnolipid Bolaforms trigger an innate immune response in Arabidopsis thaliana. Scientific Reports, 2018, 8, 8534.	3.3	25
10	Differential Interaction of Synthetic Glycolipids with Biomimetic Plasma Membrane Lipids Correlates with the Plant Biological Response. Langmuir, 2017, 33, 9979-9987.	3.5	19
11	The cyclic lipopeptide orfamide induces systemic resistance in rice to Cochliobolus miyabeanus but not to Magnaporthe oryzae. Plant Cell Reports, 2017, 36, 1731-1746.	5.6	39
12	Key Impact of an Uncommon Plasmid on Bacillus amyloliquefaciens subsp. plantarum S499 Developmental Traits and Lipopeptide Production. Frontiers in Microbiology, 2017, 8, 17.	3.5	15
13	Stimulation of Fengycin-Type Antifungal Lipopeptides in Bacillus amyloliquefaciens in the Presence of the Maize Fungal Pathogen Rhizomucor variabilis. Frontiers in Microbiology, 2017, 8, 850.	3.5	66
14	Biosynthesis, Chemical Structure, and Structure-Activity Relationship of Orfamide Lipopeptides Produced by Pseudomonas protegens and Related Species. Frontiers in Microbiology, 2016, 7, 382.	3.5	71
15	Pyoverdine and histicorrugatin-mediated iron acquisition in Pseudomonas thivervalensis. BioMetals, 2016, 29, 467-485.	4.1	26
16	Complete genome sequence of Bacillus amyloliquefaciens subsp. plantarum S499, a rhizobacterium that triggers plant defences and inhibits fungal phytopathogens. Journal of Biotechnology, 2016, 238, 56-59.	3.8	29
17	Role of phenazines and cyclic lipopeptides produced by <i>pseudomonas</i> sp. CMR12a in induced systemic resistance on rice and bean. Environmental Microbiology Reports, 2016, 8, 896-904.	2.4	68
18	Comprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions. Analytical and Bioanalytical Chemistry, 2016, 408, 1917-1928.	3.7	32

MARC ONGENA

#	Article	IF	CITATIONS
19	Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances. Plant Physiology and Biochemistry, 2016, 98, 25-38.	5.8	16
20	In Situ Analysis of Bacterial Lipopeptide Antibiotics by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Methods in Molecular Biology, 2016, 1401, 161-173.	0.9	2
21	Characterization of Cichopeptins, New Phytotoxic Cyclic Lipodepsipeptides Produced by <i>Pseudomonas cichorii</i> SF1-54 and Their Role in Bacterial Midrib Rot Disease of Lettuce. Molecular Plant-Microbe Interactions, 2015, 28, 1009-1022.	2.6	35
22	Lipopeptides as main ingredients for inhibition of fungal phytopathogens by <scp><i>B</i></scp> <i>acillus subtilis/amyloliquefaciens</i> . Microbial Biotechnology, 2015, 8, 281-295.	4.2	251
23	Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin. Environmental Microbiology Reports, 2015, 7, 570-582.	2.4	54
24	Molecular Patterns of Rhizobacteria Involved in Plant Immunity Elicitation. Advances in Botanical Research, 2015, , 21-56.	1.1	8
25	Growth of desferrioxamine-deficient <i>Streptomyces</i> mutants through xenosiderophore piracy of airborne fungal contaminations. FEMS Microbiology Ecology, 2015, 91, fiv080.	2.7	25
26	To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain <scp><i>P</i></scp> <i>seudomonas</i> â€ <scp>CMR</scp> 12a. Environmental Microbiology, 2014, 16, 2282-2300.	3.8	78
27	Spatiotemporal Monitoring of the Antibiome Secreted by <i>Bacillus</i> Biofilms on Plant Roots Using MALDI Mass Spectrometry Imaging. Analytical Chemistry, 2014, 86, 4431-4438.	6.5	91
28	Plant Defense Stimulation by Natural Isolates of <i>Bacillus</i> Depends on Efficient Surfactin Production. Molecular Plant-Microbe Interactions, 2014, 27, 87-100.	2.6	172
29	Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin. Research in Microbiology, 2014, 165, 695-704.	2.1	26
30	Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis. ELife, 2014, 3, .	6.0	61
31	MALDI-FTICR MS Imaging as a Powerful Tool to Identify <i>Paenibacillus</i> Antibiotics Involved in the Inhibition of Plant Pathogens. Journal of the American Society for Mass Spectrometry, 2013, 24, 1202-1213.	2.8	50
32	Limited impact of abiotic stress on surfactin production <i>in planta</i> and on disease resistance induced by <i>Bacillus amyloliquefaciens</i> S499 in tomato and bean. FEMS Microbiology Ecology, 2013, 86, 505-519.	2.7	38
33	Systemic resistance induced by <i><scp>B</scp>acillus</i> lipopeptides in <i><scp>B</scp>eta vulgaris</i> reduces infection by the rhizomania disease vector <i><scp>P</scp>olymyxa betae</i> . Molecular Plant Pathology, 2013, 14, 416-421.	4.2	42
34	Biocontrol and Plant Growth Promotion Characterization of Bacillus Species Isolated from Calendula officinalis Rhizosphere. Indian Journal of Microbiology, 2013, 53, 447-452.	2.7	28
35	Optimization and scaling up of a biotechnological synthesis of natural green leaf volatiles using Beta vulgaris hydroperoxide lyase. Process Biochemistry, 2012, 47, 2547-2551.	3.7	16
36	Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Archives of Microbiology, 2012, 194, 893-899.	2.2	84

MARC ONGENA

#	Article	IF	CITATIONS
37	Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciensS499. FEMS Microbiology Ecology, 2012, 79, 176-191.	2.7	151
38	The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cellular Microbiology, 2011, 13, 1824-1837.	2.1	148
39	Natural functions of lipopeptides from <i>Bacillus</i> and <i>Pseudomonas</i> : more than surfactants and antibiotics. FEMS Microbiology Reviews, 2010, 34, 1037-1062.	8.6	910
40	Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories, 2009, 8, 63.	4.0	298
41	Ecological fitness of <i>Bacillus subtilis</i> BCS3 regarding production of the surfactin lipopeptide in the rhizosphere. Environmental Microbiology Reports, 2009, 1, 124-130.	2.4	27
42	Sugar beet leaves as new source of hydroperoxide lyase in a bioprocess producing green-note aldehydes. Biotechnology Letters, 2008, 30, 1115-1119.	2.2	23
43	Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 2008, 16, 115-125.	7.7	1,762
44	Surfactin and fengycin lipopeptides of <i>Bacillus subtilis</i> as elicitors of induced systemic resistance in plants. Environmental Microbiology, 2007, 9, 1084-1090.	3.8	694
45	Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Applied Microbiology and Biotechnology, 2005, 67, 692-698.	3.6	131
46	Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Applied Microbiology and Biotechnology, 2005, 69, 29-38.	3.6	272
47	Mycosubtilin Overproduction by Bacillus subtilis BBG100 Enhances the Organism's Antagonistic and Biocontrol Activities. Applied and Environmental Microbiology, 2005, 71, 4577-4584.	3.1	328
48	Isolation of an N-alkylated Benzylamine Derivative from Pseudomonas putida BTP1 as Elicitor of Induced Systemic Resistance in Bean. Molecular Plant-Microbe Interactions, 2005, 18, 562-569.	2.6	77