
Zhisheng Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/594500/publications.pdf Version: 2024-02-01

ZHISHENC YAO

#	Article	IF	CITATIONS
1	How to Improve Cumulative Methane and Nitrous Oxide Flux Estimations of the Nonâ€Steadyâ€State Chamber Method?. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	1
2	A synthesis of nitric oxide emissions across global fertilized croplands from cropâ€specific emission factors. Global Change Biology, 2022, 28, 4395-4408.	9.5	10
3	Full straw incorporation into a calcareous soil increased N2O emission despite more N2O being reduced to N2 in the winter crop season. Agriculture, Ecosystems and Environment, 2022, 335, 108007.	5.3	13
4	Update of a biogeochemical model with process-based algorithms to predict ammonia volatilization from fertilized cultivated uplands and rice paddy fields. Biogeosciences, 2022, 19, 3001-3019.	3.3	2
5	Elevated atmospheric CO ₂ reduces yieldâ€scaled N ₂ O fluxes from subtropical rice systems: Six siteâ€years field experiments. Global Change Biology, 2021, 27, 327-339.	9.5	19
6	Potential benefits of liming to acid soils on climate change mitigation and food security. Global Change Biology, 2021, 27, 2807-2821.	9.5	74
7	Less intensive nitrate leaching from Phaeozems cultivated with maize generally occurs in northeastern China. Agriculture, Ecosystems and Environment, 2021, 310, 107303.	5.3	11
8	An improved process-oriented hydro-biogeochemical model for simulating dynamic fluxes of methane and nitrous oxide in alpine ecosystems with seasonally frozen soils. Biogeosciences, 2021, 18, 4211-4225.	3.3	0
9	Soil type affects not only magnitude but also thermal sensitivity of N2O emissions in subtropical mountain area. Science of the Total Environment, 2021, 797, 149127.	8.0	9
10	Attempt to correct grassland N2O fluxes biased by the DN-based opaque static chamber measurement. Atmospheric Environment, 2021, 264, 118687.	4.1	3
11	Characteristics of annual N2O and NO fluxes from Chinese urban turfgrasses. Environmental Pollution, 2021, 290, 118017.	7.5	7
12	Phytotoxic Effects of Polyethylene Microplastics on the Growth of Food Crops Soybean (Glycine max) and Mung Bean (Vigna radiata). International Journal of Environmental Research and Public Health, 2021, 18, 10629.	2.6	22
13	Evaluation of carbon, nitrogen footprint and primary energy demand under different rice production systems. Ecological Indicators, 2020, 117, 106634.	6.3	21
14	Using field-measured soil N2O fluxes and laboratory scale parameterization of N2O/(N2O+N2) ratios to quantify field-scale soil N2 emissions. Soil Biology and Biochemistry, 2020, 148, 107904.	8.8	26
15	Soil N intensity as a measure to estimate annual N2O and NO fluxes from natural and managed ecosystems. Current Opinion in Environmental Sustainability, 2020, 47, 1-6.	6.3	19
16	Effects of fertilization and stand age on N ₂ O and NO emissions from tea plantations: a site-scale study in a subtropical region using a modified biogeochemical model. Atmospheric Chemistry and Physics, 2020, 20, 6903-6919.	4.9	10
17	Tea-planted soils as global hotspots for N ₂ O emissions from croplands. Environmental Research Letters, 2020, 15, 104018.	5.2	23
18	Benefits of integrated nutrient management on N2O and NO mitigations in water-saving ground cover rice production systems. Science of the Total Environment, 2019, 646, 1155-1163.	8.0	28

#	Article	IF	CITATIONS
19	Net ecosystem carbon and greenhouse gas budgets in fiber and cereal cropping systems. Science of the Total Environment, 2019, 647, 895-904.	8.0	31

Using a modified DNDC biogeochemical model to optimize field management of a multi-crop (cotton,) Tj ETQq0 0 0.9 rgBT /Overlock 10 T II

21	Annual dynamics of soil gross nitrogen turnover and nitrous oxide emissions in an alpine shrub meadow. Soil Biology and Biochemistry, 2019, 138, 107576.	8.8	24
22	Drip irrigation or reduced N-fertilizer rate can mitigate the high annual N2O+NO fluxes from Chinese intensive greenhouse vegetable systems. Atmospheric Environment, 2019, 212, 183-193.	4.1	66
23	Characteristics of annual greenhouse gas flux and NO release from alpine meadow and forest on the eastern Tibetan Plateau. Agricultural and Forest Meteorology, 2019, 272-273, 166-175.	4.8	19
24	Year-round measurements of nitrous oxide emissions and direct emission factors in extensively managed croplands under an alpine climate. Agricultural and Forest Meteorology, 2019, 274, 18-28.	4.8	7
25	Effects of Grazing Pattern on Ecosystem Respiration and Methane Flux in a Sown Pasture in Inner Mongolia, China. Atmosphere, 2019, 10, 5.	2.3	4
26	Modeling ammonia volatilization following the application of synthetic fertilizers to cultivated uplands with calcareous soils using an improved DNDC biogeochemistry model. Science of the Total Environment, 2019, 660, 931-946.	8.0	33
27	Annual methane emissions from degraded alpine wetlands in the eastern Tibetan Plateau. Science of the Total Environment, 2019, 657, 1323-1333.	8.0	21
28	Long-term grazing effects on soil-atmosphere exchanges of CO2, CH4 and N2O at different grasslands in Inner Mongolia: A soil core study. Ecological Indicators, 2019, 105, 316-328.	6.3	20
29	Influences of observation method, season, soil depth, land use and management practice on soil dissolvable organic carbon concentrations: A meta-analysis. Science of the Total Environment, 2018, 631-632, 105-114.	8.0	18
30	Annual N2O emissions from conventionally grazed typical alpine grass meadows in the eastern Qinghai–Tibetan Plateau. Science of the Total Environment, 2018, 625, 885-899.	8.0	30
31	Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China. Agricultural and Forest Meteorology, 2018, 248, 386-396.	4.8	29
32	Enhanced nitrogen cycling and N2O loss in water-saving ground cover rice production systems (GCRPS). Soil Biology and Biochemistry, 2018, 121, 77-86.	8.8	22
33	Increasing grassland degradation stimulates the non-growing season CO2 emissions from an alpine meadow on the Qinghai–Tibetan Plateau. Environmental Science and Pollution Research, 2018, 25, 26576-26591.	5.3	27
34	Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films. Scientific Reports, 2017, 7, 39855.	3.3	55
35	Straw return reduces yield-scaled N 2 O plus NO emissions from annual winter wheat-based cropping systems in the North China Plain. Science of the Total Environment, 2017, 590-591, 174-185.	8.0	79
36	Reducing N2O and NO emissions while sustaining crop productivity in a Chinese vegetable-cereal double cropping system. Environmental Pollution, 2017, 231, 929-941.	7.5	44

ZHISHENG YAO

#	Article	IF	CITATIONS
37	Urea deep placement reduces yield-scaled greenhouse gas (CH4 and N2O) and NO emissions from a ground cover rice production system. Scientific Reports, 2017, 7, 11415.	3.3	36
38	Benefit of using biodegradable film on rice grain yield and N use efficiency in ground cover rice production system. Field Crops Research, 2017, 201, 52-59.	5.1	38
39	Ground cover rice production systems increase soil carbon and nitrogen stocks at regional scale. Biogeosciences, 2015, 12, 4831-4840.	3.3	22
40	Organically fertilized tea plantation stimulates N ₂ O emissions and lowers NO fluxes in subtropical China. Biogeosciences, 2015, 12, 5915-5928.	3.3	55
41	Effects of increasing fertilization rates on nitric oxide emission and nitrogen use efficiency in low carbon calcareous soil. Agriculture, Ecosystems and Environment, 2015, 203, 83-92.	5.3	14
42	Characteristics of annual nitrous and nitric oxide emissions from major cereal crops in the North China Plain under alternative fertilizer management. Agriculture, Ecosystems and Environment, 2015, 207, 67-78.	5.3	55
43	Annual nitric and nitrous oxide fluxes from Chinese subtropical plastic greenhouse and conventional vegetable cultivations. Environmental Pollution, 2015, 196, 89-97.	7.5	44
44	Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system. Biogeosciences, 2014, 11, 6221-6236.	3.3	47
45	Three-year measurements of nitrous oxide emissions from cotton and wheat–maize rotational cropping systems. Atmospheric Environment, 2014, 96, 201-208.	4.1	24
46	Greenhouse gas fluxes and NO release from a Chinese subtropical riceâ€winter wheat rotation system under nitrogen fertilizer management. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 623-638.	3.0	40
47	Carbon dioxide emission from temperate semiarid steppe during the non-growing season. Atmospheric Environment, 2013, 64, 141-149.	4.1	27
48	Two-year simultaneous records of N2O and NO fluxes from a farmed cropland in the northern China plain with a reduced nitrogen addition rate by one-third. Agriculture, Ecosystems and Environment, 2013, 178, 39-50.	5.3	55
49	Nitrous oxide and methane fluxes from a rice–wheat crop rotation under wheat residue incorporation and no-tillage practices. Atmospheric Environment, 2013, 79, 641-649.	4.1	88
50	Annual emissions of nitrous oxide and nitric oxide from rice-wheat rotation and vegetable fields: a case study in the Tai-Lake region, China. Plant and Soil, 2012, 360, 37-53.	3.7	44
51	A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agriculture, Ecosystems and Environment, 2012, 152, 1-9.	5.3	139
52	Characteristics of multiple-year nitrous oxide emissions from conventional vegetable fields in southeastern China. Journal of Geophysical Research, 2011, 116, .	3.3	50
53	Annual methane uptake by temperate semiarid steppes as regulated by stocking rates, aboveground plant biomass and topsoil air permeability. Global Change Biology, 2011, 17, 2803-2816.	9.5	103
54	Effect of ammonium-based, non-sulfate fertilizers on CH4 emissions from a paddy field with a typical Chinese water management regime. Atmospheric Environment, 2011, 45, 1095-1101.	4.1	86

ZHISHENG YAO

#	Article	IF	CITATIONS
55	Feedback of grazing on gross rates of N mineralization and inorganic N partitioning in steppe soils of Inner Mongolia. Plant and Soil, 2011, 340, 127-139.	3.7	57
56	Effects of nitrogen fertilizer on CH4 emission from rice fields: multi-site field observations. Plant and Soil, 2010, 326, 393-401.	3.7	89
57	Effects of organic matter incorporation on nitrous oxide emissions from rice-wheat rotation ecosystems in China. Plant and Soil, 2010, 327, 315-330.	3.7	100
58	Spatial variability of N2O, CH4 and CO2 fluxes within the Xilin River catchment of Inner Mongolia, China: a soil core study. Plant and Soil, 2010, 331, 341-359.	3.7	41
59	Effects of soil moisture and temperature on CO2 and CH4 soil–atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China. Soil Biology and Biochemistry, 2010, 42, 773-787.	8.8	153
60	Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature, 2010, 464, 881-884.	27.8	254
61	Soilâ€atmosphere exchange potential of NO and N ₂ O in different land use types of Inner Mongolia as affected by soil temperature, soil moisture, freezeâ€thaw, and dryingâ€wetting events. Journal of Geophysical Research, 2010, 115, .	3.3	56
62	Annual methane uptake by typical semiarid steppe in Inner Mongolia. Journal of Geophysical Research, 2010, 115, .	3.3	23
63	Effects of tillage during the nonwaterlogged period on nitrous oxide and nitric oxide emissions in typical Chinese riceâ€wheat rotation ecosystems. Journal of Geophysical Research, 2010, 115, .	3.3	13
64	Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation. Soil Biology and Biochemistry, 2009, 41, 2131-2140.	8.8	98
65	Comparison of manual and automated chambers for field measurements of N2O, CH4, CO2 fluxes from cultivated land. Atmospheric Environment, 2009, 43, 1888-1896.	4.1	73
66	Growing season methane budget of an Inner Mongolian steppe. Atmospheric Environment, 2009, 43, 3086-3095.	4.1	28
67	Sheepfolds as "hotspots―of nitric oxide (NO) emission in an Inner Mongolian steppe. Agriculture, Ecosystems and Environment, 2009, 134, 136-142.	5.3	12
68	Fluxes of nitrous oxide, methane and carbon dioxide during freezing–thawing cycles in an Inner Mongolian steppe. Plant and Soil, 2008, 308, 105-117.	3.7	103
69	Effects of irrigation on nitrous oxide, methane and carbon dioxide fluxes in an Inner Mongolian steppe. Advances in Atmospheric Sciences, 2008, 25, 748-756.	4.3	32
70	Quantifying net ecosystem carbon dioxide exchange of a shortâ€plant cropland with intermittent chamber measurements. Global Biogeochemical Cycles, 2008, 22, .	4.9	49
71	Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China. Atmospheric Environment, 2007, 41, 5948-5958.	4.1	88
72	Importance of point sources on regional nitrous oxide fluxes in semi-arid steppe of Inner Mongolia, China. Plant and Soil, 2007, 296, 209-226.	3.7	39

#	Article	IF	CITATIONS
73	Microbial N Turnover and N-Oxide (N2O/NO/NO2) Fluxes in Semi-arid Grassland of Inner Mongolia. Ecosystems, 2007, 10, 623-634.	3.4	67