
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5944605/publications.pdf Version: 2024-02-01

DAMELA DOLLET

#	Article	IF	CITATIONS
1	Asymmetric Hydrogenation and Catalyst Recycling Using Ionic Liquid and Supercritical Carbon Dioxide. Journal of the American Chemical Society, 2001, 123, 1254-1255.	13.7	415
2	Switchable Solvents Consisting of Amidine/Alcohol or Guanidine/Alcohol Mixtures. Industrial & Engineering Chemistry Research, 2008, 47, 539-545.	3.7	238
3	Solvents for sustainable chemical processes. Green Chemistry, 2014, 16, 1034-1055.	9.0	192
4	Synthesis and Evaluation of Cryptolepine Analogues for Their Potential as New Antimalarial Agents. Journal of Medicinal Chemistry, 2001, 44, 3187-3194.	6.4	170
5	Neoteric solvents for asymmetric hydrogenation: supercritical fluids, ionic liquids, and expanded ionic liquidsThis work was presented at the Green Solvents for Catalysis Meeting held in Bruchsal, Germany, 13–16th October 2002 Green Chemistry, 2003, 5, 123-128.	9.0	131
6	Combining the Benefits of Homogeneous and Heterogeneous Catalysis with Tunable Solvents and Nearcritical Water. Molecules, 2010, 15, 8400-8424.	3.8	104
7	Switchable solvents. Chemical Science, 2011, 2, 609.	7.4	100
8	One-component, switchable ionic liquids derived from siloxylated amines. Chemical Communications, 2009, , 116-118.	4.1	93
9	Reversible ionic liquids designed for facile separations. Fluid Phase Equilibria, 2010, 294, 1-6.	2.5	85
10	Single component, reversible ionic liquids for energy applications. Fuel, 2010, 89, 1315-1319.	6.4	84
11	Benign coupling of reactions and separations with reversible ionic liquids. Tetrahedron, 2010, 66, 1082-1090.	1.9	70
12	Olefin Epoxidations Using Supercritical Carbon Dioxide and Hydrogen Peroxide without Added Metallic Catalysts or Peroxy Acids. Industrial & Engineering Chemistry Research, 2002, 41, 316-323.	3.7	66
13	COSMO-RS Studies: Structure–Property Relationships for CO ₂ Capture by Reversible Ionic Liquids. Industrial & Engineering Chemistry Research, 2012, 51, 16066-16073.	3.7	65
14	Organic Aqueous Tunable Solvents (OATS): A Vehicle for Coupling Reactions and Separations. Accounts of Chemical Research, 2010, 43, 1237-1245.	15.6	54
15	Reversible Ionic Liquid Stabilized Carbamic Acids: A Pathway Toward Enhanced CO ₂ Capture. Industrial & Engineering Chemistry Research, 2013, 52, 13159-13163.	3.7	47
16	Palladium-Catalyzed Suzuki Reactions in Water with No Added Ligand: Effects of Reaction Scale, Temperature, pH of Aqueous Phase, and Substrate Structure. Organic Process Research and Development, 2016, 20, 1489-1499.	2.7	41
17	Reversible <i>in Situ</i> Catalyst Formation. Accounts of Chemical Research, 2008, 41, 458-467.	15.6	39
18	Production of Tartrates by Cyanide-Mediated Dimerization of Glyoxylate: A Potential Abiotic Pathway to the Citric Acid Cycle. Journal of the American Chemical Society, 2013, 135, 13440-13445.	13.7	39

#	Article	IF	CITATIONS
19	Hydroformylation Catalyst Recycle with Gas-Expanded Liquids. Industrial & Engineering Chemistry Research, 2008, 47, 2585-2589.	3.7	36
20	The Synthesis and the Chemical and Physical Properties of Nonâ€Aqueous Silylamine Solvents for Carbon Dioxide Capture. ChemSusChem, 2012, 5, 2181-2187.	6.8	32
21	A blueprint for academic laboratories to produce SARS-CoV-2 quantitative RT-PCR test kits. Journal of Biological Chemistry, 2020, 295, 15438-15453.	3.4	31
22	Design, Synthesis, and Evaluation of Nonaqueous Silylamines for Efficient CO ₂ Capture. ChemSusChem, 2014, 7, 299-307.	6.8	30
23	Production of (<i>S</i>)-1-Benzyl-3-diazo-2-oxopropylcarbamic Acid <i>tert</i> -Butyl Ester, a Diazoketone Pharmaceutical Intermediate, Employing a Small Scale Continuous Reactor. Industrial & Engineering Chemistry Research, 2009, 48, 7032-7036.	3.7	29
24	Enhanced thermal stabilization and reduced color formation of plasticized Poly(vinyl chloride) using zinc and calcium salts of 11-maleimideoundecanoic acid. Polymer Degradation and Stability, 2015, 111, 64-70.	5.8	29
25	More Benign Synthesis of Palladium Nanoparticles in Dimethyl Sulfoxide and Their Extraction into an Organic Phase. Industrial & Engineering Chemistry Research, 2010, 49, 8174-8179.	3.7	24
26	Molecular weight tuning of low bandgap polymers by continuous flow chemistry: increasing the applicability of PffBT4T for organic photovoltaics. Journal of Materials Chemistry A, 2017, 5, 18166-18175.	10.3	23
27	Combining Homogeneous Catalysis with Heterogeneous Separation using Tunable Solvent Systems. Journal of Physical Chemistry A, 2010, 114, 3932-3938.	2.5	22
28	Indoles via Knoevenagel–Hemetsberger reaction sequence. RSC Advances, 2013, 3, 13232.	3.6	22
29	Regioselective Syntheses of 2,3,4-Tribromopyrrole and 2,3,5-Tribromopyrrole. Journal of Natural Products, 2004, 67, 1929-1931.	3.0	21
30	Use of sulfur derivatives as an <i>ortho</i> directing group for the metalation of diazines. Metalation of diazines. XVIII . Journal of Heterocyclic Chemistry, 1997, 34, 621-627.	2.6	19
31	Metalation of <i>t</i> â€butyl sulfoxides, sulfones and sulfonamides of pyridazine and pyrazine. Metalation of diazines. XX. Journal of Heterocyclic Chemistry, 1998, 35, 429-436.	2.6	19
32	Al(OtBu) ₃ as an Effective Catalyst for the Enhancement of Meerwein–Ponndorf–Verley (MPV) Reductions. Organic Process Research and Development, 2012, 16, 1301-1306.	2.7	19
33	Epoxidized linolenic acid salts as multifunctional additives for the thermal stability of plasticized PVC. Journal of Applied Polymer Science, 2015, 132, .	2.6	18
34	The Effects of Solvent and Added Bases on the Protection of Benzylamines with Carbon Dioxide. Processes, 2015, 3, 497-513.	2.8	17
35	A Tandem, Bicatalytic Continuous Flow Cyclopropanation-Homo-Nazarov-Type Cyclization. Industrial & Engineering Chemistry Research, 2015, 54, 9550-9558.	3.7	15
36	Aqueous Suzuki Coupling Reactions of Basic Nitrogen-Containing Substrates in the Absence of Added Base and Ligand: Observation of High Yields under Acidic Conditions. Journal of Organic Chemistry, 2016, 81, 8520-8529.	3.2	14

#	Article	IF	CITATIONS
37	Synthesis of an Azaphosphatriptycene and Its Rhodium Carbonyl Complex. Organometallics, 2019, 38, 1868-1871.	2.3	14
38	Pd-Catalyzed Suzuki coupling reactions of aryl halides containing basic nitrogen centers with arylboronic acids in water in the absence of added base. New Journal of Chemistry, 2017, 41, 15420-15432.	2.8	11
39	Water at elevated temperatures (WET): reactant, catalyst, and solvent in the selective hydrolysis of protecting groups. Green Chemistry, 2014, 16, 2147-2155.	9.0	10
40	Exploiting Phase Behavior for Coupling Homogeneous Reactions with Heterogeneous Separations in Sustainable Production of Pharmaceuticals. Journal of Chemical & Engineering Data, 2011, 56, 1311-1315.	1.9	9
41	Mechanism of Acid-Catalyzed Decomposition of Dicumyl Peroxide in Dodecane: Intermediacy of Cumene Hydroperoxide. Industrial & Engineering Chemistry Research, 2016, 55, 5865-5873.	3.7	9
42	Catalysis Using Supercritical or Subcritical Inert Gases under Split-Phase Conditions. ACS Symposium Series, 2002, , 97-112.	0.5	8
43	Novel Solvents for Sustainable Production of Specialty Chemicals. Annual Review of Chemical and Biomolecular Engineering, 2011, 2, 189-210.	6.8	8
44	Sustainable and Scalable Synthesis of Piperylene Sulfone: A "Volatile―and Recyclable DMSO Substitute. Industrial & Engineering Chemistry Research, 2011, 50, 23-27.	3.7	8
45	Reversible ionic surfactants for gold nanoparticle synthesis. Green Materials, 2014, 2, 54-61.	2.1	8
46	Cyclopentadiene Dimerization Kinetics in the Presence of C5 Alkenes and Alkadienes. Industrial & Engineering Chemistry Research, 2019, 58, 22516-22525.	3.7	8
47	A Plausible Prebiotic Origin of Glyoxylate: Nonenzymatic Transamination Reactions of Glycine with Formaldehyde. Synlett, 2016, 28, 93-97.	1.8	6
48	Academia–Industry Partnership for R&D Safety Culture: The Partners in Lab Safety (PALS) Initiative. Journal of Chemical Health and Safety, 2022, 29, 79-86.	2.1	6
49	pHâ€controlled reaction divergence of decarboxylation versus fragmentation in reactions of dihydroxyfumarate with glyoxylate and formaldehyde: parallels to biological pathways. Journal of Physical Organic Chemistry, 2016, 29, 352-360.	1.9	5
50	Reaction of glycine with glyoxylate: Competing transaminations, aldol reactions, and decarboxylations. Journal of Physical Organic Chemistry, 2017, 30, e3709.	1.9	5
51	The Oligomerization of Glucose Under Plausible Prebiotic Conditions. Origins of Life and Evolution of Biospheres, 2019, 49, 225-240.	1.9	4
52	Synthesis of 5-Substituted Tetrazoles: Reaction of Azide Salts with Organonitriles Catalyzed by Trialkylammonium Salts in Non-polar Media. Organic Process Research and Development, 0, , .	2.7	3
53	Butadiene sulfone as â€ ⁻ volatile', recyclable dipolar, aprotic solvent for conducting substitution and cycloaddition reactions. Sustainable Chemical Processes, 2015, 3, .	2.3	2
54	"110th Anniversary:―Interactions of Bis(1-methyl-1-phenylethyl) Peroxide with the Secondary Antioxidant Bis(octadecyloxycarbonylethyl) Sulfide: Mechanistic Studies Conducted in Dodecane as a Model System for Polyethylene. Industrial & Engineering Chemistry Research, 2019, 58, 14569-14578.	3.7	2

#	Article	IF	CITATIONS
55	Sustainable Chemistry: Reversible reaction of CO2 with amines. French-Ukrainian Journal of Chemistry, 2016, 4, 14-22.	0.4	2
56	Reaction of Diphenyldiazomethane with Benzoic Acids in Batch and Continuous Flow. Journal of Chemical Education, 2021, 98, 469-477.	2.3	2
57	Correction to "Production of Tartrates by Cyanide-Mediated Dimerization of Glyoxylate: A Potential Abiotic Pathway to the Citric Acid Cycle― Journal of the American Chemical Society, 2014, 136, 11846-11846.	13.7	1
58	Continuous Flow Chemistry: Reaction of Diphenyldiazomethane with p -Nitrobenzoic Acid. Journal of Visualized Experiments, 2017, , .	0.3	1
59	CO ₂ Promoted Gel Formation of Hydrazine, Monomethylhydrazine, and Ethylenediamine: Structures and Properties. Industrial & Engineering Chemistry Research, 2019, 58, 22652-22662.	3.7	1
60	High-pressure Sapphire Cell for Phase Equilibria Measurements of CO ₂ /Organic/Water Systems. Journal of Visualized Experiments, 2014, , e51378.	0.3	0