
Dorota Rogacka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/594394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hyperglycemic environment disrupts phosphate transporter function and promotes calcification processes in podocytes and isolated glomeruli. Journal of Cellular Physiology, 2022, 237, 2478-2491.	4.1	3
2	PTEN-induced kinase 1 deficiency alters albumin permeability and insulin signaling in podocytes. Journal of Molecular Medicine, 2022, 100, 903-915.	3.9	3
3	Insulin controls cytoskeleton reorganization and filtration barrier permeability via the PKGIα-Rac1-RhoA crosstalk in cultured rat podocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119301.	4.1	3
4	The PKGIα–Rac1 pathway is a novel regulator of insulinâ€dependent glucose uptake in cultured rat podocytes. Journal of Cellular Physiology, 2021, 236, 4655-4668.	4.1	10
5	Role of Klotho in Hyperglycemia: Its Levels and Effects on Fibroblast Growth Factor Receptors, Glycolysis, and Glomerular Filtration. International Journal of Molecular Sciences, 2021, 22, 7867.	4.1	15
6	Involvement of nitric oxide synthase/nitric oxide pathway in the regulation of SIRT1–AMPK crosstalk in podocytes: Impact on glucose uptake. Archives of Biochemistry and Biophysics, 2021, 709, 108985.	3.0	10
7	Hyperglycemia alters mitochondrial respiration efficiency and mitophagy in human podocytes. Experimental Cell Research, 2021, 407, 112758.	2.6	30
8	Insulin resistance in glomerular podocytes: Potential mechanisms of induction. Archives of Biochemistry and Biophysics, 2021, 710, 109005.	3.0	17
9	Beneficial effects of metformin on glomerular podocytes in diabetes. Biochemical Pharmacology, 2021, 192, 114687.	4.4	6
10	Purinergic P2 receptors: Involvement and therapeutic implications in diabetes-related glomerular injury. Archives of Biochemistry and Biophysics, 2021, 714, 109078.	3.0	1
11	Metformin reduces TRPC6 expression through AMPK activation and modulates cytoskeleton dynamics in podocytes under diabetic conditions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165610.	3.8	33
12	Regulation of podocytes function by AMP-activated protein kinase. Archives of Biochemistry and Biophysics, 2020, 692, 108541.	3.0	8
13	P0982PTEN-INDUCED KINASE 1 (PINK1) DEPLETION ALTERS MITOCHONDRIAL EFFICIENCY AND GLYCOLYSIS IN HUMAN PODOCYTES. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
14	Extracellular ATP modulates podocyte function through P2Y purinergic receptors and pleiotropic effects on AMPK and cAMP/PKA signaling pathways. Archives of Biochemistry and Biophysics, 2020, 695, 108649.	3.0	10
15	P0986NO/CGMP PATHWAY MODULATES GLUCOSE UPTAKE VIA REGULATION OF SIRT1 DEACETYLASE EXPRESSION AND ACTIVITY IN PODOCYTES EXPOSED TO HIGH GLUCOSE CONCENTRATIONS. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	Ο
16	The PKGIα/VASP pathway is involved in insulin- and high glucose-dependent regulation of albumin permeability in cultured rat podocytes. Journal of Biochemistry, 2020, 168, 575-588.	1.7	9
17	Cathepsin C is a novel mediator of podocyte and renal injury induced by hyperglycemia. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118723.	4.1	12
18	Metformin overcomes high glucose-induced insulin resistance of podocytes by pleiotropic effects on SIRT1 and AMPK. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 115-125.	3.8	68

Dorota Rogacka

#	Article	IF	CITATIONS
19	The TRPC6-AMPK Pathway is Involved in Insulin-Dependent Cytoskeleton Reorganization and Glucose Uptake in Cultured Rat Podocytes. Cellular Physiology and Biochemistry, 2018, 51, 393-410.	1.6	33
20	Viability of primary cultured podocytes is associated with extracellular high glucose-dependent autophagy downregulation. Molecular and Cellular Biochemistry, 2017, 430, 11-19.	3.1	14
21	Insulin increases filtration barrier permeability via TRPC6-dependent activation of PKGIα signaling pathways. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1312-1325.	3.8	22
22	Intracellular calcium signaling regulates glomerular filtration barrier permeability: the role of the PKGIαâ€dependent pathway. FEBS Letters, 2016, 590, 1739-1748.	2.8	12
23	Extracellular purines' action on glomerular albumin permeability in isolated rat glomeruli: insights into the pathogenesis of albuminuria. American Journal of Physiology - Renal Physiology, 2016, 311, F103-F111.	2.7	18
24	Reactive oxygen species are involved in insulin-dependent regulation of autophagy in primary rat podocytes. International Journal of Biochemistry and Cell Biology, 2016, 75, 23-33.	2.8	12
25	SIRT1-AMPK crosstalk is involved in high glucose-dependent impairment of insulin responsiveness in primary rat podocytes. Experimental Cell Research, 2016, 349, 328-338.	2.6	33
26	Combined effect of insulin and high glucose concentration on albumin permeability in cultured rat podocytes. Biochemical and Biophysical Research Communications, 2015, 461, 383-389.	2.1	10
27	Insulin increases glomerular filtration barrier permeability through PKGIα-dependent mobilization of BKCa channels in cultured rat podocytes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1599-1609.	3.8	32
28	The Role of AMPK‧IRT1 Pathway in High Glucoseâ€Induced Insulin Resistance in Rat Cultured Podocytes. FASEB Journal, 2015, 29, 958.4.	0.5	0
29	Insulin stimulates glucose transport via protein kinase G type I alpha-dependent pathway in podocytes. Biochemical and Biophysical Research Communications, 2014, 446, 328-334.	2.1	16
30	High glucose increases glomerular filtration barrier permeability by activating protein kinase G type Iα subunits in a Nox4-dependent manner. Experimental Cell Research, 2014, 320, 144-152.	2.6	20
31	Involvement of the AMPK–PTEN pathway in insulin resistance induced by high glucose in cultured rat podocytes. International Journal of Biochemistry and Cell Biology, 2014, 51, 120-130.	2.8	44
32	Insulin increases glomerular filtration barrier permeability through dimerization of protein kinase G type Iα subunits. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 791-804.	3.8	40
33	Metformin reduces NAD(P)H oxidase activity in mouse cultured podocytes through purinergic dependent mechanism by increasing extracellular ATP concentration. Acta Biochimica Polonica, 2013, 60, 607-12.	0.5	10
34	Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes. Biochemical and Biophysical Research Communications, 2012, 428, 167-172.	2.1	17
35	Hydrogen peroxide induces dimerization of protein kinase G type lα subunits and increases albumin permeability in cultured rat podocytes. Journal of Cellular Physiology, 2012, 227, 1004-1016.	4.1	45
36	Purinergic modulation of glucose uptake into cultured rat podocytes: Effect of diabetic milieu. Biochemical and Biophysical Research Communications, 2011, 404, 723-727.	2.1	14

#	Article	IF	CITATIONS
37	Expression of membrane-bound NPP-type ecto-phosphodiesterases in rat podocytes cultured at normal and high glucose concentrations. Biochemical and Biophysical Research Communications, 2011, 416, 64-69.	2.1	17
38	Extracellular ATP through P2 receptors activates AMP-activated protein kinase and suppresses superoxide generation in cultured mouse podocytes. Experimental Cell Research, 2011, 317, 1904-1913.	2.6	15
39	High glucose concentration affects the oxidant-antioxidant balance in cultured mouse podocytes. Journal of Cellular Biochemistry, 2011, 112, 1661-1672.	2.6	85
40	Expression of GFAT1 and OGT in podocytes: Transport of glucosamine and the implications for glucose uptake into these cells. Journal of Cellular Physiology, 2010, 225, 577-584.	4.1	15
41	Metformin induces suppression of NAD(P)H oxidase activity in podocytes. Biochemical and Biophysical Research Communications, 2010, 393, 268-273.	2.1	122
42	2,7-Dihydro-3H-pyridazino[5,4,3-kl]acridin-3-one derivatives, novel type of cytotoxic agents active on multidrug-resistant cell lines. Synthesis and biological evaluation. Bioorganic and Medicinal Chemistry, 2005, 13, 1969-1975.	3.0	26
43	The role of structural factors in the kinetics of cellular uptake of pyrazoloacridines and pyrazolopyrimidoacridines. Biochemical Pharmacology, 2004, 68, 1815-1823.	4.4	5