ç¯å**႗̃**³⁄₄**ट्रॅ**€, Miki Shinohara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5943365/publications.pdf

Version: 2024-02-01

50 2,515 23 47
papers citations h-index g-index

58 58 58 2026
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Rad52 forms ring structures and coâ€operates with RPA in singleâ€strand DNA annealing. Genes To Cells, 1998, 3, 145-156.	0.5	295
2	Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis. Nature Genetics, 2008, 40, 299-309.	9.4	197
3	Characterization of the Roles of the <i>Saccharomyces cerevisiae RAD54</i> Gene and a Homologue of <i>RAD54, RDH54/TID1</i> , in Mitosis and Meiosis. Genetics, 1997, 147, 1545-1556.	1.2	185
4	A Protein Complex Containing Mei5 and Sae3 Promotes the Assembly of the Meiosis-Specific RecA Homolog Dmc1. Cell, 2004, 119, 927-940.	13.5	125
5	Rad52 Promotes Postinvasion Steps of Meiotic Double-Strand-Break Repair. Molecular Cell, 2008, 29, 517-524.	4.5	117
6	In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. EMBO Journal, 2004, 23, 939-949.	3.5	110
7	Rad6-Bre1-mediated histone H2B ubiquitylation modulates the formation of double-strand breaks during meiosis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11380-11385.	3.3	106
8	Chromosome Synapsis Alleviates Mek1-Dependent Suppression of Meiotic DNA Repair. PLoS Biology, 2016, 14, e1002369.	2.6	95
9	A new protein complex promoting the assembly of Rad51 filaments. Nature Communications, 2013, 4, 1676.	5.8	91
10	High copy number suppression of the meiotic arrest caused by admc1mutation:REC114imposes an early recombination block andRAD54promotes aDMC1-independent DSB repair pathway. Genes To Cells, 1999, 4, 425-444.	0.5	89
11	Csm4-Dependent Telomere Movement on Nuclear Envelope Promotes Meiotic Recombination. PLoS Genetics, 2008, 4, e1000196.	1.5	79
12	Crossover Interference in <i>Saccharomyces cerevisiae</i> Requires a <i>TID1/RDH54</i> and <i>DMC1</i> Dependent Pathway. Genetics, 2003, 163, 1273-1286.	1.2	75
13	The Mitotic DNA Damage Checkpoint Proteins Rad17 and Rad24 Are Required for Repair of Double-Strand Breaks During Meiosis in Yeast. Genetics, 2003, 164, 855-865.	1.2	74
14	Genetic Analysis of Baker's Yeast Msh4-Msh5 Reveals a Threshold Crossover Level for Meiotic Viability. PLoS Genetics, 2010, 6, e1001083.	1.5	68
15	Canonical Non-Homologous End Joining in Mitosis Induces Genome Instability and Is Suppressed by M-phase-Specific Phosphorylation of XRCC4. PLoS Genetics, 2014, 10, e1004563.	1.5	68
16	RPA Mediates Recruitment of MRX to Forks and Double-Strand Breaks to Hold Sister Chromatids Together. Molecular Cell, 2016, 64, 951-966.	4.5	57
17	Isolation and Characterization of Novel xrs2 Mutations in Saccharomyces cerevisiae. Genetics, 2005, 170, 71-85.	1.2	56
18	Meiotic recombination-related DNA synthesis and its implications for cross-over and non-cross-over recombinant formation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5965-5970.	3.3	52

#	Article	IF	CITATIONS
19	Forkhead-Associated Domain of Yeast Xrs2, a Homolog of Human Nbs1, Promotes Nonhomologous End Joining Through Interaction With a Ligase IV Partner Protein, Lif1. Genetics, 2008, 179, 213-225.	1.2	43
20	Rad61/Wpl1 (Wapl), a cohesin regulator, controls chromosome compaction during meiosis. Nucleic Acids Research, 2016, 44, 3190-3203.	6.5	42
21	DNA damage response clamp 9-1-1 promotes assembly of ZMM proteins for formation of crossovers and synaptonemal complex. Journal of Cell Science, 2015, 128, 1494-506.	1.2	37
22	Remodeling of the Rad51 DNA Strand-Exchange Protein by the Srs2 Helicase. Genetics, 2013, 194, 859-872.	1.2	33
23	Mps3 SUN domain is important for chromosome motion and juxtaposition of homologous chromosomes during meiosis. Genes To Cells, 2011, 16, 1081-1096.	0.5	32
24	Meiosis-specific prophase-like pathway controls cleavage-independent release of cohesin by Wapl phosphorylation. PLoS Genetics, 2019, 15, e1007851.	1.5	32
25	Cyclinâ€dependent kinase promotes formation of the synaptonemal complex in yeast meiosis. Genes To Cells, 2010, 15, 1036-1050.	0.5	27
26	Cyclinâ€dependent kinaseâ€dependent phosphorylation of Lif1 and Sae2 controls imprecise nonhomologous end joining accompanied by doubleâ€strand break resection. Genes To Cells, 2012, 17, 473-493.	0.5	26
27	The MRX Complex Ensures NHEJ Fidelity through Multiple Pathways Including Xrs2-FHA–Dependent Tel1 Activation. PLoS Genetics, 2016, 12, e1005942.	1.5	25
28	Molecular Camouflage of Plasmodium falciparum Merozoites by Binding of Host Vitronectin to P47 Fragment of SERA5. Scientific Reports, 2018, 8, 5052.	1.6	25
29	The synaptonemal complex central region modulates crossover pathways and feedback control of meiotic double-strand break formation. Nucleic Acids Research, 2021, 49, 7537-7553.	6.5	23
30	The N-Terminal DNA-Binding Domain of Rad52 Promotes <i>RAD51</i> li>Independent Recombination in <i>Saccharomyces cerevisiae</i>	1.2	20
31	Dot1-Dependent Histone H3K79 Methylation Promotes the Formation of Meiotic Double-Strand Breaks in the Absence of Histone H3K4 Methylation in Budding Yeast. PLoS ONE, 2014, 9, e96648.	1.1	20
32	Multiple Pathways Suppress Non-Allelic Homologous Recombination during Meiosis in Saccharomyces cerevisiae. PLoS ONE, 2013, 8, e63144.	1.1	19
33	Specificity Determinants in Interaction of the Initiator (Rep) Proteins with the Origins in the Plasmids ColE2-P9 and ColE3-CA38 Identified by Chimera Analysis. Journal of Molecular Biology, 1996, 257, 290-300.	2.0	18
34	Doubleâ€strand break repairâ€adox: Restoration of suppressed doubleâ€strand break repair during mitosis induces genomic instability. Cancer Science, 2014, 105, 1519-1525.	1.7	17
35	Budding Yeast <i>SLX4</i> Contributes to the Appropriate Distribution of Crossovers and Meiotic Double-Strand Break Formation on Bivalents During Meiosis. G3: Genes, Genomes, Genetics, 2016, 6, 2033-2042.	0.8	13
36	Meiotic prophase-like pathway for cleavage-independent removal of cohesin for chromosome morphogenesis. Current Genetics, 2019, 65, 817-827.	0.8	13

#	Article	IF	CITATIONS
37	Distinct Functions in Regulation of Meiotic Crossovers for DNA Damage Response Clamp Loader Rad24(Rad17) and Mec1(ATR) Kinase. Genetics, 2019, 213, 1255-1269.	1.2	13
38	SCF ^{Cdc4} ubiquitin ligase regulates synaptonemal complex formation during meiosis. Life Science Alliance, 2021, 4, e202000933.	1.3	12
39	Meiosisâ€specific cohesin component, Rec8, promotes the localization of Mps3 SUN domain protein on the nuclear envelope. Genes To Cells, 2018, 24, 94-106.	0.5	11
40	The Double-Strand Break Landscape of Meiotic Chromosomes Is Shaped by the Paf1 Transcription Elongation Complex in <i>Saccharomyces cerevisiae</i>). Genetics, 2016, 202, 497-512.	1.2	10
41	Srs2 helicase prevents the formation of toxic DNA damage during late prophase I of yeast meiosis. Chromosoma, 2019, 128, 453-471.	1.0	10
42	Phosphorylation of luminal region of the SUN-domain protein Mps3 promotes nuclear envelope localization during meiosis. ELife, 2021, 10, .	2.8	9
43	Regulation of Msh4-Msh5 association with meiotic chromosomes in budding yeast. Genetics, 2021, 219, .	1.2	8
44	Enhanced homologous recombination by the modulation of targeting vector ends. Scientific Reports, 2020, 10, 2518.	1.6	7
45	Genetic Interactions of Histone Modification Machinery Set1 and PAF1C with the Recombination Complex Rec114-Mer2-Mei4 in the Formation of Meiotic DNA Double-Strand Breaks. International Journal of Molecular Sciences, 2020, 21, 2679.	1.8	7
46	Distinct Functions of the Two Specificity Determinants in Replication Initiation of Plasmids ColE2-P9 and ColE3-CA38. Journal of Bacteriology, 2007, 189, 2392-2400.	1.0	5
47	The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast. Biochemical and Biophysical Research Communications, 2013, 441, 867-872.	1.0	5
48	Polyphenols from persimmon fruit attenuate acetaldehyde-induced DNA double-strand breaks by scavenging acetaldehyde. Scientific Reports, 2022, 12, .	1.6	3
49	Casein kinase II phosphorylates the C-terminal region of Lif1 to promote the Lif1-Xrs2 interaction needed for non-homologous end joining. Biochemical and Biophysical Research Communications, 2018, 501, 1080-1084.	1.0	2
50	Molecular Mechanisms to Protect or Rearrange Genetic Information, Causing by DNA Double-Strand Breaks: Yin and Yang of DNA Double-Strand Breaks. Kagaku To Seibutsu, 2021, 59, 168-175.	0.0	0