
Christina Biasi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5943140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bare soil and reed canary grass ecosystem respiration in peat extraction sites in Eastern Finland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 200.	1.6	47
2	Living, dead, and absent trees—How do moth outbreaks shape smallâ€scale patterns of soil organic matter stocks and dynamics at the Subarctic mountain birch treeline?. Global Change Biology, 2022, 28, 441-462.	9.5	9
3	A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils—changing the paradigm. Environmental Research Letters, 2022, 17, 013004.	5.2	29
4	Emissions of atmospherically reactive gases nitrous acid and nitric oxide from Arctic permafrost peatlands. Environmental Research Letters, 2022, 17, 024034.	5.2	5
5	Isotopically characterised N ₂ O reference materials for use as community standards. Rapid Communications in Mass Spectrometry, 2022, 36, e9296.	1.5	5
6	Sources of nitrous oxide and the fate of mineral nitrogen in subarctic permafrost peat soils. Biogeosciences, 2022, 19, 2683-2698.	3.3	4
7	Microbiome assembly in thawing permafrost and its feedbacks to climate. Global Change Biology, 2022, 28, 5007-5026.	9.5	34
8	Global patterns of nitrate isotope composition in rivers and adjacent aquifers reveal reactive nitrogen cascading. Communications Earth & Environment, 2021, 2, .	6.8	56
9	Denitrification is the major nitrous acid production pathway in boreal agricultural soils. Communications Earth & Environment, 2021, 2, .	6.8	12
10	Statistical upscaling of ecosystem CO ₂ fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Global Change Biology, 2021, 27, 4040-4059.	9.5	83
11	Warming climate forcing impact from a sub-arctic peatland as a result of late Holocene permafrost aggradation and initiation of bare peat surfaces. Quaternary Science Reviews, 2021, 264, 107022.	3.0	3
12	Thawing Yedoma permafrost is a neglected nitrous oxide source. Nature Communications, 2021, 12, 7107.	12.8	24
13	Content of soil-derived carbon in soil biota and fauna living near soil surface: Implications for radioactive waste. Journal of Environmental Radioactivity, 2020, 225, 106450.	1.7	1
14	Atmospheric impact of nitrous oxide uptake by boreal forest soils can be comparable to that of methane uptake. Plant and Soil, 2020, 454, 121-138.	3.7	12
15	Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of Wetland Methane Emissions. Global Biogeochemical Cycles, 2020, 34, e2020GB006678.	4.9	34
16	Nitrous oxide emissions from permafrost-affected soils. Nature Reviews Earth & Environment, 2020, 1, 420-434.	29.7	90
17	Microorganisms in the phylloplane modulate the BVOC emissions of Brassica nigra leaves. Plant Signaling and Behavior, 2020, 15, 1728468.	2.4	5
18	Primary plant succession on freshly degraded yedoma (ice complex) in Lena delta (Eastern Siberia). BIO Web of Conferences, 2020, 24, 00047.	0.2	1

CHRISTINA BIASI

#	Article	IF	CITATIONS
19	Archaeal nitrification is a key driver of high nitrous oxide emissions from arctic peatlands. Soil Biology and Biochemistry, 2019, 137, 107539.	8.8	33
20	Diet and movements of pikeperch (Sander lucioperca) in a large oligotrophic lake with an exceptionally high pikeperch yield. Ecology of Freshwater Fish, 2019, 28, 533-543.	1.4	10
21	Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw. Global Change Biology, 2019, 25, 1746-1764.	9.5	52
22	Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality. Biogeochemistry, 2019, 143, 257-274.	3.5	24
23	Uptake of Soil-Derived Carbon into Plants: Implications for Disposal of Nuclear Waste. Environmental Science & Technology, 2019, 53, 4198-4205.	10.0	5
24	Interaction between tannins and fungal necromass stabilizes fungal residues in boreal forest soils. New Phytologist, 2019, 223, 16-21.	7.3	73
25	Vertical stratification of bacteria and archaea in sediments of a small boreal humic lake. FEMS Microbiology Letters, 2019, 366, .	1.8	30
26	Significance of dark CO2 fixation in arctic soils. Soil Biology and Biochemistry, 2018, 119, 11-21.	8.8	58
27	A plant–microbe interaction framework explaining nutrient effects on primary production. Nature Ecology and Evolution, 2018, 2, 1588-1596.	7.8	100
28	Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic. Global Change Biology, 2018, 24, 5188-5204.	9.5	45
29	Effects of prolonged drought stress on Scots pine seedling carbon allocation. Tree Physiology, 2017, 37, 418-427.	3.1	33
30	Mechanisms responsible for high N ₂ O emissions from subarctic permafrost peatlands studied via stable isotope techniques. Global Biogeochemical Cycles, 2017, 31, 172-189.	4.9	36
31	The emissions of nitrous oxide and methane from natural soil temperature gradients in a volcanic area in southwest Iceland. Soil Biology and Biochemistry, 2017, 109, 70-80.	8.8	8
32	The impact of long-term water level draw-down on microbial biomass: A comparative study from two peatland sites with different nutrient status. European Journal of Soil Biology, 2017, 80, 59-68.	3.2	17
33	Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO ₂ /CH ₄ Production Ratios. Applied and Environmental Microbiology, 2017, 83, .	3.1	55
34	Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat. Scientific Reports, 2017, 7, 45811.	3.3	47
35	Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6238-6243.	7.1	119
36	Modeling <scp>CO</scp> ₂ emissions from <scp>A</scp> rctic lakes: Model development and siteâ€level study. Journal of Advances in Modeling Earth Systems, 2017, 9, 2190-2213.	3.8	38

CHRISTINA BIASI

#	Article	IF	CITATIONS
37	Warming of subarctic tundra increases emissions of all three important greenhouse gases – carbon dioxide, methane, and nitrous oxide. Global Change Biology, 2017, 23, 3121-3138.	9.5	187
38	Methane dynamics in the subarctic tundra: combining stable isotope analyses, plot- and ecosystem-scale flux measurements. Biogeosciences, 2016, 13, 597-608.	3.3	37
39	Variation in N ₂ Fixation in Subarctic Tundra in Relation to Landscape Position and Nitrogen Pools and Fluxes. Arctic, Antarctic, and Alpine Research, 2016, 48, 111-125.	1.1	19
40	Neglecting diurnal variations leads to uncertainties in terrestrial nitrous oxide emissions. Scientific Reports, 2016, 6, 25739.	3.3	51
41	Heterogeneity of carbon loss and its temperature sensitivity in East-European subarctic tundra soils. FEMS Microbiology Ecology, 2016, 92, fiw140.	2.7	10
42	Morphology and properties of the soils of permafrost peatlands in the southeast of the Bol'shezemel'skaya tundra. Eurasian Soil Science, 2016, 49, 498-511.	1.6	21
43	Priming effect increases with depth in a boreal forest soil. Soil Biology and Biochemistry, 2016, 99, 104-107.	8.8	56
44	Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nature Climate Change, 2016, 6, 950-953.	18.8	288
45	A combined biogeochemical and palaeobotanical approach to study permafrost environments and past dynamics. Journal of Quaternary Science, 2015, 30, 189-200.	2.1	19
46	Studying the impact of living roots on the decomposition of soil organic matter in two different forestry-drained peatlands. Plant and Soil, 2015, 396, 59-72.	3.7	17
47	Inferring Phytoplankton, Terrestrial Plant and Bacteria Bulk δ¹³C Values from Compound Specific Analyses of Lipids and Fatty Acids. PLoS ONE, 2015, 10, e0133974.	2.5	39
48	Microbial Respiration in Arctic Upland and Peat Soils as a Source of Atmospheric Carbon Dioxide. Ecosystems, 2014, 17, 112-126.	3.4	35
49	Trophic transfer of polychlorinated biphenyls (PCB) in a boreal lake ecosystem: Testing of bioaccumulation models. Science of the Total Environment, 2014, 466-467, 690-698.	8.0	27
50	Linking microbial community structure and allocation of plant-derived carbon in an organic agricultural soil using 13CO2 pulse-chase labelling combined with 13C-PLFA profiling. Soil Biology and Biochemistry, 2013, 58, 207-215.	8.8	71
51	Linking water vapor and CO2 exchange from a perennial bioenergy crop on a drained organic soil in eastern Finland. Agricultural and Forest Meteorology, 2013, 168, 47-58.	4.8	26
52	Carbon dioxide balance of subarctic tundra from plot to regional scales. Biogeosciences, 2013, 10, 437-452.	3.3	65
53	Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula) Tj ETQq1 I	. 0.784314 rg 3.1	BT/Overlock
54	Measured and modeled biomass growth in relation to photosynthesis acclimation of a bioenergy crop (Reed canary grass) under elevated temperature, CO2 enrichment and different water regimes. Biomass and Bioenergy, 2012, 46, 251-262.	5.7	9

CHRISTINA BIASI

#	Article	IF	CITATIONS
55	Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME Journal, 2012, 6, 1058-1077.	9.8	152
56	Carbon assimilation and allocation (13C labeling) in a boreal perennial grass (Phalaris arundinacea) subjected to elevated temperature and CO2 through a growing season. Environmental and Experimental Botany, 2012, 75, 150-158.	4.2	23
57	Hot spots for nitrous oxide emissions found in different types of permafrost peatlands. Global Change Biology, 2011, 17, 2601-2614.	9.5	145
58	Differentiating sources of CO2 from organic soil under bioenergy crop cultivation: A field-based approach using 14C. Soil Biology and Biochemistry, 2011, 43, 2406-2409.	8.8	9
59	Atmospheric impact of bioenergy based on perennial crop (reed canary grass, <i>Phalaris) Tj ETQq1 1 0.784314</i>	rgBT/Ove	rlock 10 Tf S
60	Large N2O emissions from cryoturbated peat soil in tundra. Nature Geoscience, 2009, 2, 189-192.	12.9	171
61	Cultivation of a perennial grass for bioenergy on a boreal organic soil – carbon sink or source?. GCB Bioenergy, 2009, 1, 35-50.	5.6	57
62	Initial effects of experimental warming on carbon exchange rates, plant growth and microbial dynamics of a lichen-rich dwarf shrub tundra in Siberia. Plant and Soil, 2008, 307, 191-205.	3.7	126
63	Direct experimental evidence for the contribution of lime to CO2 release from managed peat soil. Soil Biology and Biochemistry, 2008, 40, 2660-2669.	8.8	83
64	Conservation of soil organic matter through cryoturbation in arctic soils in Siberia. Journal of Geophysical Research, 2007, 112, .	3.3	118
65	Soil carbon and nitrogen dynamics along a latitudinal transect in Western Siberia, Russia. Biogeochemistry, 2006, 81, 239-252.	3.5	27
66	Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Rapid Communications in Mass Spectrometry, 2005, 19, 1401-1408.	1.5	145
67	Microtopography and Plant-Cover Controls on Nitrogen Dynamics in Hummock Tundra Ecosystems in Siberia. Arctic, Antarctic, and Alpine Research, 2005, 37, 435-443.	1.1	33
68	Storage and mineralization of carbon and nitrogen in soils of a frost-boil tundra ecosystem in Siberia. Applied Soil Ecology, 2005, 29, 173-183.	4.3	40
69	Effects of energy limitation on Ca2+ and K+ homeostasis in anoxia-tolerant and anoxia-intolerant hepatocytes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R307-R316.	1.8	9
70	Acute and chronic effects of temperature, and of nutritional state, on ion homeostasis and energy metabolism in teleost hepatocytes. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1997, 167, 280-286.	1.5	13
71	Membrane-metabolic coupling and ion homeostasis in anoxia-tolerant and anoxia-intolerant hepatocytes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1996, 270, R614-R620.	1.8	25
72	The effect of geothermal soil warming on the production of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), nitric oxide (NO) and nitrous acid (HONO) from forest soil in southern Iceland. Icelandic Agricultural Sciences, 0, 31, 11-22.	0.0	2

#	Article	IF	CITATIONS
73	Stable isotope method reveals the role of abiotic source of carbon dioxide efflux from geothermally warmed soil in southern Iceland. Icelandic Agricultural Sciences, 0, 33, 41-56.	0.0	1