Konrad Górski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5942988/publications.pdf

Version: 2024-02-01

1307594 1281871 21 138 7 11 citations g-index h-index papers 21 21 21 139 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Molecular Biocompatibility of a Silver Nanoparticle Complex with Graphene Oxide to Human Skin in a 3D Epidermis In Vitro Model. Pharmaceutics, 2022, 14, 1398.	4.5	8
2	Gonadotropin-releasing hormone and kisseptin- $10\mathrm{regulate}$ nuclear receptor subfamily 5 group a member $1/\mathrm{catenin}$ beta $1/\mathrm{nuclear}$ receptor subfamily 0 group B member $1/\mathrm{catenin}$ activity in female rat anterior pituitary gland. Journal of Physiology and Pharmacology, 2018, 69, .	1.1	1
3	Involvement of salsolinol in the suckling-induced oxytocin surge in sheep. Domestic Animal Endocrinology, 2017, 59, 75-80.	1.6	1
4	Does nanobiotechnology create new tools to combat microorganisms?. Nanotechnology Reviews, 2017, 6, 171-189.	5.8	10
5	Up-regulation of oxytocin receptor gene and protein in the sheep anterior pituitary by a dopamine derivative (salsolinol). Czech Journal of Animal Science, 2017, 62, 150-156.	1.3	4
6	Effect of salsolinol on ACTH and cortisol response to handling stress in early anestrous sheep. Czech Journal of Animal Science, 2017, 62, 130-139.	1.3	3
7	Salsolinol Upâ€Regulates Oxytocin Expression and Release During Lactation in Sheep. Journal of Neuroendocrinology, 2016, 28, 12362.	2.6	10
8	Hypothalamic-pituitary GnRH/LH axis activity is affected by salsolinol in sheep during lactation: Effects of intracerebroventricular infusions of salsolinol and its antagonizing analogue. Theriogenology, 2016, 86, 1931-1938.	2.1	1
9	Pituitary galaninergic system activity in female rats: the regulatory role of gonadal steroids. Journal of Physiology and Pharmacology, 2016, 67, 423-9.	1.1	2
10	Nanobiotechnology in reproduction – pros and cons. A review. Journal of Animal and Feed Sciences, 2015, 24, 179-192.	1.1	1
11	Different types of opioid receptors involved in the suppression of LH secretion in lactating sheep. Animal Reproduction Science, 2013, 141, 62-67.	1.5	7
12	Regulation of Growth Hormone Secretion in Nursing Ewes: An Involvement of Î⅓â€Receptor Subtype. Reproduction in Domestic Animals, 2012, 47, 746-751.	1.4	1
13	Effects of a structural analogue of salsolinol, 1-MeDIQ, on pituitary prolactin release and dopaminergic activity in the mediobasal hypothalamus in nursing sheep. Brain Research, 2010, 1307, 72-77.	2.2	13
14	Opioid-salsolinol relationship in the control of prolactin release during lactation. Neuroscience, 2010, 170, 1165-1171.	2.3	8
15	Effects of salsolinol and its antagonistic analogue, 1-MeDIQ, on growth hormone release in nursing sheep. Acta Neurobiologiae Experimentalis, 2010, 70, 20-7.	0.7	4
16	The Possible Involvement of Salsolinol and Hypothalamic Prolactin in the Central Regulatory Processes in Ewes During Lactation. Reproduction in Domestic Animals, 2009, 45, e54-60.	1.4	17
17	Identification of salsolinol in the mediobasal hypothalamus of lactating ewes and its relation to suckling-induced prolactin and GH release. Journal of Endocrinology, 2008, 198, 83-89.	2.6	31
18	Differential endocrine response in rams to intracerebroventricular infusion of genistein. Acta Neurobiologiae Experimentalis, 2008, 68, 43-50.	0.7	2

#	Article	lF	CITATIONS
19	Genistein-induced pituitary prolactin gene expression and prolactin release in ovariectomized ewes following a series of intracerebroventricular infusions. Reproductive Biology, 2007, 7, 233-46.	1.9	2
20	Central estrogen-like effect of genistein on growth hormone secretion in the ewe. Acta Neurobiologiae Experimentalis, 2007, 67, 411-9.	0.7	9
21	Differential effects of soy-containing diets on the reproductive tissues growth and reproductive hormone secretion in male rats. Reproductive Biology, 2006, 6, 275-90.	1.9	3