
Wojciech Branicki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5942786/publications.pdf Version: 2024-02-01

WOICIECH RRANICKI

#	Article	IF	CITATIONS
1	The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Science International: Genetics, 2013, 7, 98-115.	1.6	365
2	Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Science International: Genetics, 2015, 17, 173-179.	1.6	236
3	Ecological factors influence population genetic structure of European grey wolves. Molecular Ecology, 2006, 15, 4533-4553.	2.0	204
4	The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation. Forensic Science International: Genetics, 2018, 35, 123-135.	1.6	199
5	Phylogeography of two European newt species - discordance between mtDNA and morphology. Molecular Ecology, 2005, 14, 2475-2491.	2.0	173
6	Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for	1.6	164
7	Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Science International: Genetics, 2015, 14, 161-167.	1.6	163
8	Model-based prediction of human hair color using DNA variants. Human Genetics, 2011, 129, 443-454.	1.8	151
9	Development of a methylation marker set for forensic age estimation using analysis of public methylation data and the Agena Bioscience EpiTYPER system. Forensic Science International: Genetics, 2016, 24, 65-74.	1.6	127
10	Phylogeographic history of grey wolves in Europe. BMC Evolutionary Biology, 2010, 10, 104.	3.2	116
11	Mitochondrial phylogeography of the moor frog, Rana arvalis. Molecular Ecology, 2004, 13, 1469-1480.	2.0	108
12	Validation of <i>Cytochrome b</i> Sequence Analysis as a Method of Species Identification. Journal of Forensic Sciences, 2003, 48, 1-5.	0.9	101
13	Global skin colour prediction from DNA. Human Genetics, 2017, 136, 847-863.	1.8	99
14	Interactions Between <i>HERC2</i> , <i>OCA2</i> and <i>MC1R</i> May Influence Human Pigmentation Phenotype. Annals of Human Genetics, 2009, 73, 160-170.	0.3	96
15	<i>MC1R</i> variants increased the risk of sporadic cutaneous melanoma in darkerâ€pigmented <scp>C</scp> aucasians: A pooledâ€analysis from the M‣KIP project. International Journal of Cancer, 2015, 136, 618-631.	2.3	92
16	Homogeneity and distinctiveness of Polish paternal lineages revealed by Y chromosome microsatellite haplotype analysis. Human Genetics, 2002, 110, 592-600.	1.8	91
17	DNA methylation in ELOVL2 and C1orf132 correctly predicted chronological age of individuals from three disease groups. International Journal of Legal Medicine, 2018, 132, 1-11.	1.2	73
18	Role of miRNA and IncRNAs in organ fibrosis and aging. Biomedicine and Pharmacotherapy, 2021, 143, 112132.	2.5	72

#	Article	IF	CITATIONS
19	The SARS-CoV-2 ORF10 is not essential in vitro or in vivo in humans. PLoS Pathogens, 2020, 16, e1008959.	2.1	71
20	Genetic diversity and relatedness within packs in an intensely hunted population of wolvesCanis lupus. Acta Theriologica, 2005, 50, 3-22.	1.1	69
21	Determination of Phenotype Associated SNPs in the MC1R Gene. Journal of Forensic Sciences, 2007, 52, 349-354.	0.9	64
22	Body fluid identification using a targeted mRNA massively parallel sequencing approach – results of a EUROFORGEN/EDNAP collaborative exercise. Forensic Science International: Genetics, 2018, 34, 105-115.	1.6	64
23	Altered cytokine levels and immune responses in patients with SARS-CoV-2 infection and related conditions. Cytokine, 2020, 133, 155143.	1.4	64
24	MCPIP1 contributes to clear cell renal cell carcinomas development. Angiogenesis, 2017, 20, 325-340.	3.7	61
25	Association of the SLC45A2 gene with physiological human hair colour variation. Journal of Human Genetics, 2008, 53, 966-971.	1.1	60
26	DNA methylation-based age clocks: From age prediction to age reversion. Ageing Research Reviews, 2021, 68, 101314.	5.0	60
27	Bona fide colour: DNA prediction of human eye and hair colour from ancient and contemporary skeletal remains. Investigative Genetics, 2013, 4, 3.	3.3	58
28	Gene–gene interactions contribute to eye colour variation in humans. Journal of Human Genetics, 2011, 56, 447-455.	1.1	57
29	The common occurrence of epistasis in the determination of human pigmentation and its impact on DNA-based pigmentation phenotype prediction. Forensic Science International: Genetics, 2014, 11, 64-72.	1.6	53
30	Evaluation of DNA Variants Associated with Androgenetic Alopecia and Their Potential to Predict Male Pattern Baldness. PLoS ONE, 2015, 10, e0127852.	1.1	51
31	Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair. Human Molecular Genetics, 2018, 27, 559-575.	1.4	51
32	Replication of Severe Acute Respiratory Syndrome Coronavirus 2 in Human Respiratory Epithelium. Journal of Virology, 2020, 94, .	1.5	51
33	Effects of host genetic variations on response to, susceptibility and severity of respiratory infections. Biomedicine and Pharmacotherapy, 2020, 128, 110296.	2.5	50
34	Development of the VISAGE enhanced tool and statistical models for epigenetic age estimation in blood, buccal cells and bones. Aging, 2021, 13, 6459-6484.	1.4	49
35	Non-coding RNA profile in lung cancer. Experimental and Molecular Pathology, 2020, 114, 104411.	0.9	47
36	Genetic identification of putative remains of the famous astronomer Nicolaus Copernicus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12279-12282.	3.3	46

#	Article	IF	CITATIONS
37	HIrisPlex-S system for eye, hair, and skin color prediction from DNA: Massively parallel sequencing solutions for two common forensically used platforms. Forensic Science International: Genetics, 2019, 43, 102152.	1.6	45
38	Biowarfare, bioterrorism and biocrime: A historical overview on microbial harmful applications. Forensic Science International, 2020, 314, 110366.	1.3	45
39	Angiotensin converting enzyme: A review on expression profile and its association with human disorders with special focus on SARS-CoV-2 infection. Vascular Pharmacology, 2020, 130, 106680.	1.0	44
40	The Impact of Mitochondrial and Nuclear DNA Variants on Late-Onset Alzheimer's Disease Risk. Journal of Alzheimer's Disease, 2011, 27, 197-210.	1.2	43
41	MC1R gene variants and non-melanoma skin cancer: a pooled-analysis from the M-SKIP project. British Journal of Cancer, 2015, 113, 354-363.	2.9	43
42	Development and validation of the VISAGE AmpliSeq basic tool to predict appearance and ancestry from DNA. Forensic Science International: Genetics, 2020, 48, 102336.	1.6	43
43	Towards broadening Forensic DNA Phenotyping beyond pigmentation: Improving the prediction of head hair shape from DNA. Forensic Science International: Genetics, 2018, 37, 241-251.	1.6	38
44	Prediction of eye color in the Slovenian population using the IrisPlex SNPs. Croatian Medical Journal, 2013, 54, 381-386.	0.2	37
45	Evaluation of the predictive capacity of DNA variants associated with straight hair in Europeans. Forensic Science International: Genetics, 2015, 19, 280-288.	1.6	36
46	MicroRNA Signature in Renal Cell Carcinoma. Frontiers in Oncology, 2020, 10, 596359.	1.3	32
47	Prediction of Eye Color from Genetic Data Using Bayesian Approach*. Journal of Forensic Sciences, 2012, 57, 880-886.	0.9	30
48	Association of Polymorphic Sites in the <i>OCA2</i> Gene with Eye Colour Using the Tree Scanning Method. Annals of Human Genetics, 2008, 72, 184-192.	0.3	29
49	The contribution of melanocortin 1 receptor gene polymorphisms and the agouti signalling protein gene 8818A>G polymorphism to cutaneous melanoma and basal cell carcinoma in a Polish population. Experimental Dermatology, 2009, 18, 167-174.	1.4	28
50	Forensic ancestry analysis with two capillary electrophoresis ancestry informative marker (AIM) panels: Results of a collaborative EDNAP exercise. Forensic Science International: Genetics, 2015, 19, 56-67.	1.6	27
51	DNA-based predictive models for the presence of freckles. Forensic Science International: Genetics, 2019, 42, 252-259.	1.6	27
52	Investigating the impact of age-depended hair colour darkening during childhood on DNA-based hair colour prediction with the HIrisPlex system. Forensic Science International: Genetics, 2018, 36, 26-33.	1.6	25
53	Development and optimization of the VISAGE basic prototype tool for forensic age estimation. Forensic Science International: Genetics, 2020, 48, 102322.	1.6	25
54	Modified aging of elite athletes revealed by analysis of epigenetic age markers. Aging, 2018, 10, 241-252.	1.4	25

#	Article	IF	CITATIONS
55	Increased risk of developing cutaneous malignant melanoma is associated with variation in pigmentation genes and VDR, and may involve epistatic effects. Melanoma Research, 2014, 24, 388-396.	0.6	24
56	Collaborative EDNAP exercise on the IrisPlex system for DNA-based prediction of human eye colour. Forensic Science International: Genetics, 2014, 11, 241-251.	1.6	23
57	Hypermethylation of TRIM59 and KLF14 Influences Cell Death Signaling in Familial Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-11.	1.9	23
58	Epigenetic age prediction in semen – marker selection and model development. Aging, 2021, 13, 19145-19164.	1.4	23
59	What's new in the pathophysiology of alopecia areata? the possible contribution of skin and gut microbiome in the pathogenesis of alopecia – Big opportunities, big challenges, and novel perspectives. International Journal of Trichology, 2019, 11, 185.	0.1	21
60	Further evidence for population specific differences in the effect of DNA markers and gender on eye colour prediction in forensics. International Journal of Legal Medicine, 2016, 130, 923-934.	1.2	20
61	Exploring the possibility of predicting human head hair greying from DNA using whole-exome and targeted NGS data. BMC Genomics, 2020, 21, 538.	1.2	20
62	Development and Evaluation of the Ancestry Informative Marker Panel of the VISAGE Basic Tool. Genes, 2021, 12, 1284.	1.0	20
63	The challenge of predicting human pigmentation traits in degraded bone samples with the MPS-based HIrisPlex-S system. Forensic Science International: Genetics, 2020, 47, 102301.	1.6	19
64	Expression profile of IncRNAs and miRNAs in esophageal cancer: Implications in diagnosis, prognosis, and therapeutic response. Journal of Cellular Physiology, 2020, 235, 9269-9290.	2.0	17
65	A population data for 17 Y-chromosome STR loci in South Poland population sample—Some DYS458.2 variants uncovered and sequenced. Forensic Science International: Genetics, 2009, 4, e43-e44.	1.6	16
66	Genetic variation of 15 autosomal STR loci in a population sample from Poland. Legal Medicine, 2010, 12, 246-248.	0.6	16
67	Association of Melanocortin-1 Receptor Variants with Pigmentary Traits in Humans: AÂPooled Analysis from the M-Skip Project. Journal of Investigative Dermatology, 2016, 136, 1914-1917.	0.3	16
68	MC1R variants in childhood and adolescent melanoma: a retrospective pooled analysis of a multicentre cohort. The Lancet Child and Adolescent Health, 2019, 3, 332-342.	2.7	16
69	A collaborative exercise on DNA methylation-based age prediction and body fluid typing. Forensic Science International: Genetics, 2022, 57, 102656.	1.6	15
70	DNA methylation signature in blood does not predict calendar age in patients with chronic lymphocytic leukemia but may alert to the presence of disease. Forensic Science International: Genetics, 2018, 34, e15-e17.	1.6	13
71	Melanocortin-1 receptor, skin cancer and phenotypic characteristics (M-SKIP) project: study design and methods for pooling results of genetic epidemiological studies. BMC Medical Research Methodology, 2012, 12, 116.	1.4	12
72	Potential association of single nucleotide polymorphisms in pigmentation genes with the development of basal cell carcinoma. Journal of Dermatology, 2012, 39, 693-698.	0.6	12

#	Article	IF	CITATIONS
73	Donor age and C1orf132/MIR29B2C determine age-related methylation signature of blood after allogeneic hematopoietic stem cell transplantation. Clinical Epigenetics, 2016, 8, 93.	1.8	12
74	Variants of SCARB1 and VDRInvolved in Complex Genetic Interactions May Be Implicated in the Genetic Susceptibility to Clear Cell Renal Cell Carcinoma. BioMed Research International, 2015, 2015, 1-11.	0.9	11
75	Variation in the RPTN gene may facilitate straight hair formation in Europeans and East Asians. Journal of Dermatological Science, 2018, 91, 331-334.	1.0	11
76	Evaluation of supervised machine-learning methods for predicting appearance traits from DNA. Forensic Science International: Genetics, 2021, 53, 102507.	1.6	11
77	Impact of excessive alcohol abuse on age prediction using the VISAGE enhanced tool for epigenetic age estimation in blood. International Journal of Legal Medicine, 2021, 135, 2209-2219.	1.2	9
78	STR data for SGM Plus and penta E and D loci in a population sample from south Poland. Forensic Science International, 2002, 127, 237-239.	1.3	8
79	Identification of Cellular Factors Required for SARS-CoV-2 Replication. Cells, 2021, 10, 3159.	1.8	8
80	Predicting Physical Appearance from DNA Data—Towards Genomic Solutions. Genes, 2022, 13, 121.	1.0	8
81	The impact of correlations between pigmentation phenotypes and underlying genotypes on genetic prediction of pigmentation traits. Forensic Science International: Genetics, 2021, 50, 102395.	1.6	7
82	Y-Chromosomal polymorphic loci DYS19, DYS390, DYS393 in a population sample from northern Poland. Electrophoresis, 1999, 20, 1702-1706.	1.3	5
83	Genetic examination of the putative skull of Jan Kochanowski reveals its female sex. Croatian Medical Journal, 2011, 52, 403-409.	0.2	5
84	Assessment of expression profile of microRNAs in multiple sclerosis patients treated with fingolimod. Journal of Molecular Neuroscience, 2020, 70, 1274-1281.	1.1	5
85	Searching for improvements in predicting human eye colour from DNA. International Journal of Legal Medicine, 2021, 135, 2175-2187.	1.2	5
86	Distribution of mtDNA Haplogroups in a Population Sample from Poland. Journal of Forensic Sciences, 2005, 50, 1-2.	0.9	5
87	Overlapping association signals in the genetics of hair-related phenotypes in humans and their relevance to predictive DNA analysis. Forensic Science International: Genetics, 2022, 59, 102693.	1.6	5
88	A new dimension of the forensic DNA expertise – the need for training experts and expertise recipients. Archiwum Medycyny Sadowej I Kryminologii, 2014, 3, 175-194.	0.3	4
89	Hot on the Trail of Genes that Shape Our Fingerprints. Journal of Investigative Dermatology, 2016, 136, 740-742.	0.3	4
90	STR data for AmpF/STR Profiler Plus loci in south Poland. Forensic Science International, 2001, 122, 173-174.	1.3	3

#	Article	IF	CITATIONS
91	Application of BioRobot M48 to forensic DNA extraction. Forensic Science International: Genetics Supplement Series, 2008, 1, 58-59.	0.1	3
92	A cautionary note on using binary calls for analysis of DNA methylation. Bioinformatics, 2015, 31, 1519-1520.	1.8	3
93	Testing the impact of trait prevalence priors in Bayesian-based genetic prediction modeling of human appearance traits. Forensic Science International: Genetics, 2021, 50, 102412.	1.6	3
94	The OCA2 gene as a marker for eye colour prediction. Forensic Science International: Genetics Supplement Series, 2008, 1, 536-537.	0.1	2
95	Recommendations of the Polish Speaking Working Group of the International Society for Forensic Genetics on forensic Y chromosome typing. Archiwum Medycyny Sadowej I Kryminologii, 2020, 70, 1-18.	0.3	2
96	Examination of LT-DNA traces – literature overview and general recommendations of the Polish Speaking Working Group of the International Society for Forensic Genetics (ISFG-PL). Archiwum Medycyny Sadowej I Kryminologii, 2020, 70, 103-123.	0.3	2
97	Determination of forensically relevant SNPs in the MC1R gene. International Congress Series, 2006, 1288, 816-818.	0.2	1
98	Examples of combining genetic evidence—Bayesian network approach. Forensic Science International: Genetics Supplement Series, 2008, 1, 669-670.	0.1	1
99	Recommendations of the Polish Speaking Working Group of the International Society for Forensic Genetics for forensic mitochondrial DNA testing. Archiwum Medycyny Sadowej I Kryminologii, 2018, 68, 242-258.	0.3	1
100	Beyond HV1 and HV2—identification of valuable mitochondrial DNA single nucleotide polymorphisms. International Congress Series, 2004, 1261, 100-102.	0.2	0
101	Prediction of Hair Color from Genetic Data. Materials and Methods, 0, 1, .	0.0	Ο