
Ovidiu C Andronesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5942550/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection of 2-Hydroxyglutarate in <i>IDH</i> -Mutated Glioma Patients by In Vivo Spectral-Editing and 2D Correlation Magnetic Resonance Spectroscopy. Science Translational Medicine, 2012, 4, 116ra4.	12.4	367
2	Methodological consensus on clinical proton MRS of the brain: Review and recommendations. Magnetic Resonance in Medicine, 2019, 82, 527-550.	3.0	280
3	Detection of oncogenic IDH1 mutations using magnetic resonance spectroscopy of 2-hydroxyglutarate. Journal of Clinical Investigation, 2013, 123, 3659-3663.	8.2	147
4	Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts' consensus recommendations. NMR in Biomedicine, 2021, 34, e4484.	2.8	144
5	Treatment Response Assessment in IDH-Mutant Glioma Patients by Noninvasive 3D Functional Spectroscopic Mapping of 2-Hydroxyglutarate. Clinical Cancer Research, 2016, 22, 1632-1641.	7.0	127
6	Advanced Magnetic Resonance Imaging of the Physical Processes in Human Glioblastoma. Cancer Research, 2014, 74, 4622-4637.	0.9	123
7	Realâ€ŧime motion and <i>B</i> ₀ corrected single voxel spectroscopy using volumetric navigators. Magnetic Resonance in Medicine, 2011, 66, 314-323.	3.0	111
8	Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate. Nature Communications, 2018, 9, 1474.	12.8	106
9	lsocitrate dehydrogenaseâ€mutant glioma: Evolving clinical and therapeutic implications. Cancer, 2017, 123, 4535-4546.	4.1	103
10	3D GABA imaging with real-time motion correction, shim update and reacquisition of adiabatic spiral MRSI. NeuroImage, 2014, 103, 290-302.	4.2	100
11	Advanced single voxel ¹ H magnetic resonance spectroscopy techniques in humans: Experts' consensus recommendations. NMR in Biomedicine, 2021, 34, e4236.	2.8	98
12	Spectroscopic imaging with improved gradient modulated constant adiabaticity pulses on high-field clinical scanners. Journal of Magnetic Resonance, 2010, 203, 283-293.	2.1	81
13	Spectral editing in ¹ H magnetic resonance spectroscopy: Experts' consensus recommendations. NMR in Biomedicine, 2021, 34, e4411.	2.8	74
14	Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations. NMR in Biomedicine, 2021, 34, e4309.	2.8	72
15	Consensus recommendations for MRI and PET imaging of primary central nervous system lymphoma: guideline statement from the International Primary CNS Lymphoma Collaborative Group (IPCG). Neuro-Oncology, 2021, 23, 1056-1071.	1.2	68
16	Real-time motion- and B0-correction for LASER-localized spiral-accelerated 3D-MRSI of the brain at 3T. NeuroImage, 2014, 88, 22-31.	4.2	64
17	Neurologic 3D MR Spectroscopic Imaging with Low-Power Adiabatic Pulses and Fast Spiral Acquisition. Radiology, 2012, 262, 647-661.	7.3	63
18	1D-spectral editing and 2D multispectral inÂvivo 1 H-MRS and 1 H-MRSI - Methods and applications. Analytical Biochemistry, 2017, 529, 48-64.	2.4	45

Ovidiu C Andronesi

#	Article	IF	CITATIONS
19	Lowâ€power adiabatic sequences for in vivo localized twoâ€dimensional chemical shift correlated MR spectroscopy. Magnetic Resonance in Medicine, 2010, 64, 1542-1556.	3.0	42
20	Dynamic ³¹ P–MRSI using spiral spectroscopic imaging can map mitochondrial capacity in muscles of the human calf during plantar flexion exercise at 7ÂT. NMR in Biomedicine, 2016, 29, 1825-1834.	2.8	38
21	Motion correction methods for MRS: experts' consensus recommendations. NMR in Biomedicine, 2021, 34, e4364.	2.8	37
22	Spatial variability and reproducibility of GABAâ€edited MEGA‣ASER 3Dâ€MRSI in the brain at 3ÂT. NMR in Biomedicine, 2016, 29, 1656-1665.	2.8	36
23	Bone marrow drives central nervous system regeneration after radiation injury. Journal of Clinical Investigation, 2017, 128, 281-293.	8.2	36
24	Whole-slice mapping of GABA and GABA+ at 7T via adiabatic MEGA-editing, real-time instability correction, and concentric circle readout. NeuroImage, 2019, 184, 475-489.	4.2	35
25	Correlation chemical shift imaging with lowâ€power adiabatic pulses and constantâ€density spiral trajectories. NMR in Biomedicine, 2012, 25, 195-209.	2.8	34
26	Realâ€ŧime motion and <i>B</i> _O correction for localized adiabatic selective refocusing (LASER) MRSI using echo planar imaging volumetric navigators. NMR in Biomedicine, 2012, 25, 347-358.	2.8	32
27	Pilot trial of inosine to elevate urate levels in amyotrophic lateral sclerosis. Annals of Clinical and Translational Neurology, 2018, 5, 1522-1533.	3.7	31
28	Volumetric relationship between 2-hydroxyglutarate and FLAIR hyperintensity has potential implications for radiotherapy planning of mutant <i>IDH</i> glioma patients. Neuro-Oncology, 2016, 18, now100.	1.2	30
29	Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy. Journal of Magnetic Resonance, 2008, 193, 251-258.	2.1	26
30	Whole brain mapping of water pools and molecular dynamics with rotating frame MR relaxation using gradient modulated low-power adiabatic pulses. NeuroImage, 2014, 89, 92-109.	4.2	24
31	ACRIN 6684: Multicenter, phase II assessment of tumor hypoxia in newly diagnosed glioblastoma using magnetic resonance spectroscopy. PLoS ONE, 2018, 13, e0198548.	2.5	21
32	Radiomics, Metabolic, and Molecular MRI for Brain Tumors. Seminars in Neurology, 2018, 38, 032-040.	1.4	19
33	In vivo brain rosette spectroscopic imaging (RSI) with LASER excitation, constant gradient strength readout, and automated LCModel quantification for all voxels. Magnetic Resonance in Medicine, 2016, 76, 380-390.	3.0	18
34	Threeâ€dimensional MR spectroscopic imaging using adiabatic spin echo and hypergeometric dualâ€band suppression for metabolic mapping over the entire brain. Magnetic Resonance in Medicine, 2017, 77, 490-497.	3.0	18
35	Super-Resolution Whole-Brain 3D MR Spectroscopic Imaging for Mapping D-2-Hydroxyglutarate and Tumor Metabolism in Isocitrate Dehydrogenase 1–mutated Human Gliomas. Radiology, 2020, 294, 589-597.	7.3	18
36	Real-time Correction of Motion and Imager Instability Artifacts during 3D γ-Aminobutyric Acid–edited MR Spectroscopic Imaging. Radiology, 2018, 286, 666-675.	7.3	17

Ovidiu C Andronesi

#	Article	IF	CITATIONS
37	Early changes in glioblastoma metabolism measured by MR spectroscopic imaging during combination of anti-angiogenic cediranib and chemoradiation therapy are associated with survival. Npj Precision Oncology, 2017, 1, .	5.4	16
38	Imaging Neurochemistry and Brain Structure Tracks Clinical Decline and Mechanisms of ALS in Patients. Frontiers in Neurology, 2020, 11, 590573.	2.4	16
39	Myo-Inositol Levels Measured with MR Spectroscopy Can Help Predict Failure of Antiangiogenic Treatment in Recurrent Glioblastoma. Radiology, 2022, 302, 410-418.	7.3	13
40	An integrated RF-receive/B0-shim array coil boosts performance of whole-brain MR spectroscopic imaging at 7ÂT. Scientific Reports, 2020, 10, 15029.	3.3	12
41	Combined offâ€resonance imaging and T2 relaxation in the rotating frame for positive contrast MR imaging of infection in a murine burn model. Journal of Magnetic Resonance Imaging, 2010, 32, 1172-1183.	3.4	11
42	Achieving high-resolution 1H-MRSI of the human brain with compressed-sensing and low-rank reconstruction at 7 Tesla. Journal of Magnetic Resonance, 2021, 331, 107048.	2.1	9
43	Precision oncology in the era of radiogenomics: the case of D-2HG as an imaging biomarker for mutant IDH gliomas. Neuro-Oncology, 2018, 20, 865-867.	1.2	8
44	Spiral MRSI and tissue segmentation of normal-appearing white matter and white matter lesions in relapsing remitting multiple sclerosis patientsa~†. Magnetic Resonance Imaging, 2020, 74, 21-30.	1.8	7
45	Wholeâ€Slab <scp>3D MR</scp> Spectroscopic Imaging of the Human Brain With Spiralâ€Outâ€In Sampling at <scp>7T</scp> . Journal of Magnetic Resonance Imaging, 2021, 53, 1237-1250.	3.4	5
46	MR spectroscopic imaging predicts early response to anti-angiogenic therapy in recurrent glioblastoma. Neuro-Oncology Advances, 2021, 3, vdab060.	0.7	5
47	Atlasâ€based GABA mapping with 3D MEGAâ€MRSI: Crossâ€correlation to singleâ€voxel MRS. NMR in Biomedicine, 2021, 34, e4275.	2.8	4
48	3D magnetic resonance spectroscopic imaging reveals links between brain metabolites and multidimensional pain features in fibromyalgia. European Journal of Pain, 2021, 25, 2050-2064.	2.8	4
49	Improving Dâ€2â€hydroxyglutarate MR spectroscopic imaging in mutant isocitrate dehydrogenase glioma patients with multiplexed RFâ€receive/B ₀ â€shim array coils at 3 T. NMR in Biomedicine, 2022, 3 e4621.	52.8	2
50	In Vivo Absolute Metabolite Quantification Using a Multiplexed <scp>ERETICâ€RX</scp> Array Coil for Wholeâ€Brain <scp>MR</scp> Spectroscopic Imaging. Journal of Magnetic Resonance Imaging, 2022, 56, 121-133.	3.4	2
51	Deep Learning Super-resolution MR Spectroscopic Imaging of Brain Metabolism and Mutant IDH Clioma. Neuro-Oncology Advances, 0, , .	0.7	2
52	MRS for D-2HG Detection in IDH-Mutant Glioma. , 2020, , 173-189.		1
53	BIMG-22. DEEP LEARNING SUPER-RESOLUTION MR SPECTROSCOPIC IMAGING TO MAP TUMOR METABOLISM IN MUTANT IDH GLIOMA PATIENTS. Neuro-Oncology Advances, 2021, 3, i5-i6.	0.7	0
54	Characterizing glioma microenvironment with ultra-high gradient diffusion MRI Journal of Clinical Oncology, 2017, 35, 2050-2050.	1.6	0

#	Article	IF	CITATIONS
55	BIOM-09. MYO-INOSITOL LEVELS ON MR SPECTROSCOPY CAN PREDICT FAILURE OF ANTI-ANGIOGENIC TREATMENT IN RECURRENT GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi11-vi12.	1.2	0
56	TAMI-29. MR SPECTROSCOPY MEASURES OF LAC/NAA AND NAA/CHO DIFFERENTIATE SURVIVORSHIP IN PATIENTS WITH RECURRENT GLIOBLASTOMA TREATED WITH ANTI-ANGIOGENIC THERAPY. Neuro-Oncology, 2021, 23, vi204-vi204.	1.2	0
57	NIMG-16. DEEP LEARNING SUPER-RESOLUTION MR SPECTROSCOPIC IMAGING TO MAP TUMOR METABOLISM IN MUTANT IDH GLIOMA PATIENTS. Neuro-Oncology, 2021, 23, vi131-vi131.	1.2	Ο