Pere Bruna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5942087/publications.pdf Version: 2024-02-01

DEDE RDIINA

#	Article	IF	CITATIONS
1	Atomic-Scale Relaxation Dynamics and Aging in a Metallic Glass Probed by X-Ray Photon Correlation Spectroscopy. Physical Review Letters, 2012, 109, 165701.	7.8	217
2	On the validity of Avrami formalism in primary crystallization. Journal of Applied Physics, 2006, 100, 054907.	2.5	71
3	Cell size distribution in random tessellations of space. Physical Review E, 2004, 70, 066119.	2.1	56
4	Relaxation of rapidly quenched metallic glasses: Effect of the relaxation state on the slow low temperature dynamics. Acta Materialia, 2013, 61, 3002-3011.	7.9	56
5	Polyamorphic transitions in Ce-based metallic glasses by synchrotron radiation. Physical Review B, 2011, 84, .	3.2	35
6	Glass-formation and corrosion properties of Fe–Cr–Mo–C–B glassy ribbons with low Cr content. Journal of Alloys and Compounds, 2014, 615, S128-S131.	5.5	33
7	Effect of minor additions on the glass forming ability and magnetic properties of Fe–Nb–B based metallic glasses. Intermetallics, 2010, 18, 773-780.	3.9	30
8	Thermal and structural characterization of Fe–Nb–B alloys prepared by mechanical alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 874-880.	5.6	28
9	Structural and magnetic characterization of FeNbBCu alloys as a function of Nb content. Journal Physics D: Applied Physics, 2009, 42, 095010.	2.8	24
10	Effect of minor Co additions on the crystallization and magnetic properties of Fe(Co)NbBCu alloys. Journal of Alloys and Compounds, 2010, 496, 202-207.	5.5	19
11	Bulk soft magnetic materials from ball-milled Fe77Nb7B15Cu1 amorphous ribbons. Intermetallics, 2009, 17, 79-85.	3.9	14
12	Glass forming ability, thermal stability, crystallization and magnetic properties of [(Fe,Co,Ni)0.75Si0.05B0.20]95Nb4Zr1 metallic glasses. Journal of Non-Crystalline Solids, 2013, 367, 30-36.	3.1	14
13	Phonon dispersion relation of metallic glasses. Physical Review B, 2016, 94, .	3.2	14
14	Glass-forming ability and microstructural evolution of [(Fe0.6Co0.4)0.75Si0.05B0.20]96-xNb4Mx metallic glasses studied by M¶ssbauer spectroscopy. Journal of Alloys and Compounds, 2017, 704, 748-759.	5.5	14
15	Structural study of conventional and bulk metallic glasses during annealing. Journal of Alloys and Compounds, 2009, 483, 578-581.	5.5	10
16	Phase-field modelling of microstructural evolution in primary crystallization. Journal of Alloys and Compounds, 2009, 483, 645-649.	5.5	10
17	Thermal and structural changes induced by mechanical alloying in melt-spun Fe–Ni based amorphous alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 881-887.	5.6	9
18	New (FeCoCrNi)-(B,Si) high-entropy metallic glasses, study of the crystallization processes by X-ray diffraction and MA¶ssbauer spectroscopy Journal of Non-Crystalline Solids, 2020, 547, 120301.	3.1	9

Pere Bruna

#	Article	IF	CITATIONS
19	Fragility measurement of Pd-based metallic glass by dynamic mechanical analysis. Journal of Alloys and Compounds, 2010, 504, S215-S218.	5.5	8
20	Size distribution evolution equations in space-competing domain growth systems. Philosophical Magazine, 2004, 84, 2023-2039.	1.6	7
21	Phase-field modeling of glass crystallization: Change of the transport properties and crystallization kinetic. Journal of Non-Crystalline Solids, 2007, 353, 1002-1004.	3.1	7
22	Structure, mechanical properties and nanocrystallization of (FeCoCrNi)-(B,Si) high-entropy metallic glasses. Intermetallics, 2022, 141, 107432.	3.9	7
23	Singleâ€Phase MnFe ₂ O ₄ Powders Obtained by the Polymerized Complex Method. Journal of the American Ceramic Society, 2008, 91, 2488-2494.	3.8	6
24	Microstructural characterisation and kinetics modelling of vermicular cast irons. Materials Science and Technology, 2008, 24, 1214-1221.	1.6	6
25	Structural and thermal changes induced by mechanical alloying in a Fe–Ni based amorphous melt-spun alloy. Materials Chemistry and Physics, 2009, 114, 996-999.	4.0	6
26	Communication: Are metallic glasses different from other glasses? A closer look at their high frequency dynamics. Journal of Chemical Physics, 2011, 135, 101101.	3.0	6
27	Structure and Mössbauer Analysis of Melt-Spun Fe-Pd Ribbons Containing Ni and Co. Metals, 2015, 5, 1020-1028.	2.3	5
28	Structural evolution of metallic glasses during annealing through in situ synchrotron X-ray diffraction. Journal of Non-Crystalline Solids, 2008, 354, 5140-5142.	3.1	4
29	High frequency dynamics of BMG determined by synchrotron radiation: A microscopic picture. Journal of Alloys and Compounds, 2010, 495, 319-322.	5.5	4
30	Acoustic properties of metallic glasses in the mesoscopic regime by inelastic X-ray scattering. Journal of Alloys and Compounds, 2011, 509, S95-S98.	5.5	4
31	Fe in P-doped basaltic melts: A Mössbauer spectroscopy study. Materials Letters, 2018, 228, 57-60.	2.6	4
32	Evaluation of the Effect of Minor Additions in the Crystallization Path of [(Fe0.5Co0.5)0.75B0.2Si0.05]100-xMx Metallic Glasses by Means of Mössbauer Spectroscopy. Metals, 2021, 11, 1293.	2.3	4
33	Inelastic X-ray scattering in metallic glasses. Intermetallics, 2012, 30, 148-153.	3.9	3
34	Influence of a magnetic field applied during the quenching process on the spin density and nanoscale structure of an amorphous Fe–B ribbon. Materials Letters, 2012, 87, 131-134.	2.6	3
35	Role of Mo in the local configuration and structure stabilization of amorphous steels, a Synchrotron X-ray diffraction and M¶ssbauer study. Journal of Alloys and Compounds, 2011, 509, S56-S59.	5.5	2
36	Mössbauer characterization of an amorphous steel with optimal Mo content. Journal of Non-Crystalline Solids, 2008, 354, 5138-5139.	3.1	1

#	Article	IF	CITATIONS
37	Thermal and structural study of nanocrystalline Fe(Co)NiZrB alloys prepared by mechanical alloying. Journal of Materials Science, 2010, 45, 557-561.	3.7	0