
Per A Larsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5941569/publications.pdf Version: 2024-02-01

DED ALADSSON

#	Article	IF	CITATIONS
1	Surface tailoring of cellulose aerogel-like structures with ultrathin coatings using molecular layer-by-layer assembly. Carbohydrate Polymers, 2022, 282, 119098.	10.2	11
2	Spinning of Stiff and Conductive Filaments from Cellulose Nanofibrils and PEDOT:PSS Nanocomplexes. ACS Applied Polymer Materials, 2022, 4, 4119-4130.	4.4	8
3	Water-resistant hybrid cellulose nanofibril films prepared by charge reversal on gibbsite nanoclays. Carbohydrate Polymers, 2022, 295, 119867.	10.2	3
4	Hierarchical build-up of bio-based nanofibrous materials with tunable metal–organic framework biofunctionality. Materials Today, 2021, 48, 47-58.	14.2	38
5	On the interaction between PEDOT:PSS and cellulose: Adsorption mechanisms and controlling factors. Carbohydrate Polymers, 2021, 260, 117818.	10.2	18
6	Advanced Characterization of Self-Fibrillating Cellulose Fibers and Their Use in Tunable Filters. ACS Applied Materials & Interfaces, 2021, 13, 32467-32478.	8.0	6
7	Tailoring of rheological properties and structural polydispersity effects in microfibrillated cellulose suspensions. Cellulose, 2020, 27, 9227-9241.	4.9	25
8	Wet-expandable capsules made from partially modified cellulose. Green Chemistry, 2020, 22, 4581-4592.	9.0	7
9	Self-Fibrillating Cellulose Fibers: Rapid In Situ Nanofibrillation to Prepare Strong, Transparent, and Gas Barrier Nanopapers. Biomacromolecules, 2020, 21, 1480-1488.	5.4	26
10	Surface Modification of Nanocellulosics and Functionalities. , 2020, , 17-63.		2
11	Ambientâ€Dried, 3Dâ€Printable and Electrically Conducting Cellulose Nanofiber Aerogels by Inclusion of Functional Polymers. Advanced Functional Materials, 2020, 30, 1909383.	14.9	92
12	In Situ Modification of Regenerated Cellulose Beads: Creating All-Cellulose Composites. Industrial & Engineering Chemistry Research, 2020, 59, 2968-2976.	3.7	13
13	Towards optimised size distribution in commercial microfibrillated cellulose: a fractionation approach. Cellulose, 2019, 26, 1565-1575.	4.9	38
14	Toward Improved Understanding of the Interactions between Poorly Soluble Drugs and Cellulose Nanofibers. Langmuir, 2018, 34, 5464-5473.	3.5	27
15	Effect of Chemical Functionality on the Mechanical and Barrier Performance of Nanocellulose Films. ACS Applied Nano Materials, 2018, 1, 1959-1967.	5.0	20
16	Chemical modification of cellulose-rich fibres to clarify the influence of the chemical structure on the physical and mechanical properties of cellulose fibres and thereof made sheets. Carbohydrate Polymers, 2018, 182, 1-7.	10.2	43
17	On the origin of sorption hysteresis in cellulosic materials. Carbohydrate Polymers, 2018, 182, 15-20.	10.2	49
18	On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels. Journal of Materials Chemistry A, 2018, 6, 19371-19380.	10.3	63

Per A Larsson

#	Article	IF	CITATIONS
19	Novel, Cellulose-Based, Lightweight, Wet-Resilient Materials with Tunable Porosity, Density, and Strength. ACS Sustainable Chemistry and Engineering, 2018, 6, 9951-9957.	6.7	18
20	Advanced three-dimensional paper structures: Mechanical characterization and forming of sheets made from modified celluloseAfibers. Materials and Design, 2017, 128, 231-240.	7.0	16
21	Bacterial adhesion to polyvinylamine-modified nanocellulose films. Colloids and Surfaces B: Biointerfaces, 2017, 151, 224-231.	5.0	19
22	Dynamic Mechanical Thermal Analysis Data of Sheets Made from Wood-Based Cellulose Fibers Partially Converted to Dialcohol Cellulose. Data in Brief, 2017, 14, 504-506.	1.0	0
23	Chemically modified cellulose micro- and nanofibrils as paper-strength additives. Cellulose, 2017, 24, 3883-3899.	4.9	41
24	Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying. ACS Applied Materials & Interfaces, 2016, 8, 11682-11689.	8.0	86
25	On the relationship between fibre composition and material properties following periodate oxidation and borohydride reduction of lignocellulosic fibres. Cellulose, 2016, 23, 3495-3510.	4.9	20
26	Macro- and mesoporous nanocellulose beads for use in energy storage devices. Applied Materials Today, 2016, 5, 246-254.	4.3	47
27	Contact-active antibacterial aerogels from cellulose nanofibrils. Colloids and Surfaces B: Biointerfaces, 2016, 146, 415-422.	5.0	33
28	Towards natural-fibre-based thermoplastic films produced by conventional papermaking. Green Chemistry, 2016, 18, 3324-3333.	9.0	39
29	Vibrational Sum Frequency Spectroscopy on Polyelectrolyte Multilayers: Effect of Molecular Surface Structure on Macroscopic Wetting Properties. Langmuir, 2015, 31, 4435-4442.	3.5	4
30	Native and functionalized micrometre-sized cellulose capsules prepared by microfluidic flow focusing. RSC Advances, 2014, 4, 19061-19067.	3.6	16
31	Immunoselective Cellulose Nanospheres: A Versatile Platform for Nanotheranostics. ACS Macro Letters, 2014, 3, 1117-1120.	4.8	17
32	Ductile All-Cellulose Nanocomposite Films Fabricated from Core–Shell Structured Cellulose Nanofibrils. Biomacromolecules, 2014, 15, 2218-2223.	5.4	84
33	Highly ductile fibres and sheets by core-shell structuring of the cellulose nanofibrils. Cellulose, 2014, 21, 323-333.	4.9	68
34	Improved barrier films of cross-linked cellulose nanofibrils: a microscopy study. Green Materials, 2014, 2, 163-168.	2.1	17
35	Filtration, adsorption and immunodetection of virus using polyelectrolyte multilayer-modified paper. Colloids and Surfaces B: Biointerfaces, 2013, 101, 205-209.	5.0	18
36	Treatment of cellulose fibres with polyelectrolytes and wax colloids to create tailored highly hydrophobic fibrous networks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414, 415-421.	4.7	40

Per A Larsson

#	Article	IF	CITATIONS
37	Diffusion-induced dimensional changes in papers and fibrillar films: influence of hydrophobicity and fibre-wall cross-linking. Cellulose, 2010, 17, 891-901.	4.9	15
38	A novel approach to study the hydroexpansion mechanisms of paper using spray technique. Nordic Pulp and Paper Research Journal, 2009, 24, 371-380.	0.7	4
39	Influence of fibre–fibre joint properties on the dimensional stability of paper. Cellulose, 2008, 15, 515-525.	4.9	35
40	The influence of periodate oxidation on the moisture sorptivity and dimensional stability of paper. Cellulose, 2008, 15, 837-847.	4.9	56
41	Rapidly Prepared Nanocellulose Hybrids as Gas Barrier, Flame Retardant, and Energy Storage Materials. ACS Applied Nano Materials, 0, , .	5.0	2