
Julian Blagg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5941093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The promise and peril of chemical probes. Nature Chemical Biology, 2015, 11, 536-541.	3.9	698
2	Choose and Use Your Chemical Probe Wisely to Explore Cancer Biology. Cancer Cell, 2017, 32, 9-25.	7.7	183
3	A selective chemical probe for exploring the role of CDK8 and CDK19 in human disease. Nature Chemical Biology, 2015, 11, 973-980.	3.9	114
4	A Useful Approach to Identify Novel Small-Molecule Inhibitors of Wnt-Dependent Transcription. Cancer Research, 2010, 70, 5963-5973.	0.4	96
5	Discovery of Potent, Selective, and Orally Bioavailable Small-Molecule Modulators of the Mediator Complex-Associated Kinases CDK8 and CDK19. Journal of Medicinal Chemistry, 2016, 59, 1078-1101.	2.9	89
6	Crystal structure of an Aurora-A mutant that mimics Aurora-B bound to MLN8054: insights into selectivity and drug design. Biochemical Journal, 2010, 427, 19-28.	1.7	86
7	Structure-Based Optimization of Potent, Selective, and Orally Bioavailable CDK8 Inhibitors Discovered by High-Throughput Screening. Journal of Medicinal Chemistry, 2016, 59, 9337-9349.	2.9	86
8	8-Substituted Pyrido[3,4- <i>d</i>]pyrimidin-4(3 <i>H</i>)-one Derivatives As Potent, Cell Permeable, KDM4 (JMJD2) and KDM5 (JARID1) Histone Lysine Demethylase Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 1388-1409.	2.9	83
9	Imidazo[4,5- <i>b</i>]pyridine Derivatives As Inhibitors of Aurora Kinases: Lead Optimization Studies toward the Identification of an Orally Bioavailable Preclinical Development Candidate. Journal of Medicinal Chemistry, 2010, 53, 5213-5228.	2.9	80
10	Donated chemical probes for open science. ELife, 2018, 7, .	2.8	80
11	Structure-Based Design of Orally Bioavailable 1 <i>H</i> -Pyrrolo[3,2- <i>c</i>]pyridine Inhibitors of Mitotic Kinase Monopolar Spindle 1 (MPS1). Journal of Medicinal Chemistry, 2013, 56, 10045-10065.	2.9	72
12	Aurora Isoform Selectivity: Design and Synthesis of Imidazo[4,5- <i>b</i>]pyridine Derivatives as Highly Selective Inhibitors of Aurora-A Kinase in Cells. Journal of Medicinal Chemistry, 2013, 56, 9122-9135.	2.9	70
13	Assessing the mechanism and therapeutic potential of modulators of the human Mediator complex-associated protein kinases. ELife, 2016, 5, .	2.8	69
14	Discovery of Potent, Orally Bioavailable, Small-Molecule Inhibitors of WNT Signaling from a Cell-Based Pathway Screen. Journal of Medicinal Chemistry, 2015, 58, 1717-1735.	2.9	65
15	Optimization of Imidazo[4,5- <i>b</i>]pyridine-Based Kinase Inhibitors: Identification of a Dual FLT3/Aurora Kinase Inhibitor as an Orally Bioavailable Preclinical Development Candidate for the Treatment of Acute Myeloid Leukemia. Journal of Medicinal Chemistry, 2012, 55, 8721-8734.	2.9	61
16	Characterization of Hedgehog Acyltransferase Inhibitors Identifies a Small Molecule Probe for Hedgehog Signaling by Cancer Cells. ACS Chemical Biology, 2016, 11, 3256-3262.	1.6	43
17	De Novo Missense Substitutions in the Gene Encoding CDK8, a Regulator of the Mediator Complex, Cause a Syndromic Developmental Disorder. American Journal of Human Genetics, 2019, 104, 709-720.	2.6	41
18	Assessing histone demethylase inhibitors in cells: lessons learned. Epigenetics and Chromatin, 2017, 10, 9.	1.8	40

Julian Blagg

#	Article	IF	CITATIONS
19	Insights into Aurora-A Kinase Activation Using Unnatural Amino Acids Incorporated by Chemical Modification. ACS Chemical Biology, 2013, 8, 2184-2191.	1.6	39
20	2,8-Disubstituted-1,6-Naphthyridines and 4,6-Disubstituted-Isoquinolines with Potent, Selective Affinity for CDK8/19. ACS Medicinal Chemistry Letters, 2016, 7, 573-578.	1.3	39
21	Dynamic Equilibrium of the Auroraâ€A Kinase Activation Loop Revealed by Singleâ€Molecule Spectroscopy. Angewandte Chemie - International Edition, 2017, 56, 11409-11414.	7.2	37
22	Chemical biology approaches to target validation in cancer. Current Opinion in Pharmacology, 2014, 17, 87-100.	1.7	36
23	Discovery of potent and selective CDK8 inhibitors from an HSP90 pharmacophore. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1443-1451.	1.0	34
24	Structure-based design of imidazo[1,2-a]pyrazine derivatives as selective inhibitors of Aurora-A kinase in cells. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5988-5993.	1.0	30
25	Rapid Discovery of Pyrido[3,4- <i>d</i>]pyrimidine Inhibitors of Monopolar Spindle Kinase 1 (MPS1) Using a Structure-Based Hybridization Approach. Journal of Medicinal Chemistry, 2016, 59, 3671-3688.	2.9	29
26	Naturally Occurring Mutations in the <i>MPS1</i> Gene Predispose Cells to Kinase Inhibitor Drug Resistance. Cancer Research, 2015, 75, 3340-3354.	0.4	27
27	Introduction of a Methyl Group Curbs Metabolism of Pyrido[3,4- <i>d</i>) pyrimidine Monopolar Spindle 1 (MPS1) Inhibitors and Enables the Discovery of the Phase 1 Clinical Candidate <i>N</i> ² -(2-Ethoxy-4-(4-methyl-4 <i>H</i> -1,2,4-triazol-3-yl)phenyl)-6-methyl- <i>N</i> ^{8(BOS172722). Journal of Medicinal Chemistry. 2018. 61, 8226-8240.}	-neopent	syl <mark>2</mark> 4rido[3,4
28	High Proliferation Rate and a Compromised Spindle Assembly Checkpoint Confers Sensitivity to the MPS1 Inhibitor BOS172722 in Triple-Negative Breast Cancers. Molecular Cancer Therapeutics, 2019, 18, 1696-1707.	1.9	24
29	Characterisation of CCT271850, a selective, oral and potent MPS1 inhibitor, used to directly measure in vivo MPS1 inhibition vs therapeutic efficacy. British Journal of Cancer, 2017, 116, 1166-1176.	2.9	23
30	Design, Synthesis and Characterization of Covalent KDM5 Inhibitors. Angewandte Chemie - International Edition, 2019, 58, 515-519.	7.2	22
31	Combining Mutational Signatures, Clonal Fitness, and Drug Affinity to Define Drug-Specific Resistance Mutations in Cancer. Cell Chemical Biology, 2018, 25, 1359-1371.e2.	2.5	17
32	Privileged Structures and Polypharmacology within and between Protein Families. ACS Medicinal Chemistry Letters, 2018, 9, 1199-1204.	1.3	16
33	7-(Pyrazol-4-yl)-3H-imidazo[4,5-b]pyridine-based derivatives for kinase inhibition: Co-crystallisation studies with Aurora-A reveal distinct differences in the orientation of the pyrazole N1-substituent. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4203-4209.	1.0	13
34	Mapping the 3D structures of small molecule binding sites. Journal of Cheminformatics, 2016, 8, .	2.8	13
35	C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-ones: Studies towards the identification of potent, cell penetrant Jumonji C domain containing histone lysine demethylase 4 subfamily (KDM4) inhibitors, compound profiling in cell-based target engagement assays. European Journal of Medicinal Chemistry, 2019, 177, 316-337.	2.6	12
36	Diverse Functionalization of Aurora-A Kinase at Specified Surface and Buried Sites by Native Chemical Modification. PLoS ONE, 2014, 9, e103935.	1.1	10

Julian Blagg

#	Article	IF	CITATIONS
37	Evaluation of APOBEC3B Recognition Motifs by NMR Reveals Preferred Substrates. ACS Chemical Biology, 2018, 13, 2427-2432.	1.6	10
38	Microwave-assisted synthesis of 4-amino-3,5-dihalopyridines. Tetrahedron, 2010, 66, 2398-2403.	1.0	8
39	Ligand discrimination between active and inactive activation loop conformations of Aurora-A kinase is unmodified by phosphorylation. Chemical Science, 2019, 10, 4069-4076.	3.7	8
40	Pyrido[3,4- <i>d</i>]pyrimidin-4(3 <i>H</i>)-one metabolism mediated by aldehyde oxidase is blocked by C2-substitution. Xenobiotica, 2017, 47, 771-777.	0.5	6
41	Dynamic Equilibrium of the Auroraâ€A Kinase Activation Loop Revealed by Singleâ€Molecule Spectroscopy. Angewandte Chemie, 2017, 129, 11567-11572.	1.6	5