Glen M Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/594085/publications.pdf Version: 2024-02-01

CLEN M DAVIS

#	Article	IF	CITATIONS
1	Physical activity recall assessment for people with spinal cord injury: Thai translation and cross-cultural adaptation. Disability and Rehabilitation, 2022, 44, 4831-4840.	0.9	2
2	Physical activity interventions using behaviour change theories for women with breast cancer: a systematic review and meta-analysis. Journal of Cancer Survivorship, 2022, 16, 1127-1148.	1.5	12
3	Assessing physical activity and health-related quality of life in individuals with spinal cord injury: a national survey in Thailand. Disability and Rehabilitation, 2022, 44, 7048-7058.	0.9	3
4	Benefits and interval training in individuals with spinal cord injury: A thematic review. Journal of Spinal Cord Medicine, 2022, 45, 327-338.	0.7	2
5	Mechanomyography and tissue oxygen saturation during electricallyâ€evoked wrist extensor fatigue in people with tetraplegia. Artificial Organs, 2022, 46, 1998-2008.	1.0	1
6	Inspiratory Muscle Training Improves Inspiratory Muscle Strength and Functional Exercise Capacity in Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension: A Pilot Randomised Controlled Study. Heart Lung and Circulation, 2021, 30, 388-395.	0.2	14
7	Functional electrical stimulation cycling exercise afterÂspinal cord injury: aÂsystematic review of health and fitness-related outcomes. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 99.	2.4	36
8	A neuro-cardiac self-regulation therapy to improve autonomic and neural function after SCI: a randomized controlled trial protocol. BMC Neurology, 2021, 21, 329.	0.8	2
9	Decline Is Not Inevitable: Exercise Capacity Trajectory in an Australian and New Zealand Fontan Cohort. Heart Lung and Circulation, 2021, 30, 1356-1363.	0.2	9
10	Exercise Intolerance, Benefits, and Prescription for People Living With a Fontan Circulation: The Fontan Fitness Intervention Trial (F-FIT)—Rationale and Design. Frontiers in Pediatrics, 2021, 9, 799125.	0.9	19
11	The "Super-Fontan―Phenotype: Characterizing Factors Associated With High Physical Performance. Frontiers in Cardiovascular Medicine, 2021, 8, 764273.	1.1	14
12	Malaysian adaptation of the physical activity scale for individuals with physical disabilities in individuals with spinal cord injury. Disability and Rehabilitation, 2020, 42, 2067-2075.	0.9	8
13	Quadriceps mechanomyography reflects muscle fatigue during electrical stimulus-sustained standing in adults with spinal cord injury – a proof of concept. Biomedizinische Technik, 2020, 65, 165-174.	0.9	1
14	Recommendations for exercise in adolescents and adults with congenital heart disease. Progress in Cardiovascular Diseases, 2020, 63, 350-366.	1.6	50
15	SVR modelling of mechanomyographic signals predicts neuromuscular stimulation-evoked knee torque in paralyzed quadriceps muscles undergoing knee extension exercise. Computers in Biology and Medicine, 2020, 117, 103614.	3.9	6
16	Physical Activity for Symptom Management in Women With Metastatic Breast Cancer: A Randomized Feasibility Trial on Physical Activity and Breast Metastases. Journal of Pain and Symptom Management, 2019, 58, 929-939.	0.6	35
17	Structured home-based exercise program for improving walking ability in ambulant children with cerebral palsy. Journal of Pediatric Rehabilitation Medicine, 2019, 12, 161-169.	0.3	4
18	Overview of Systematic Reviews of Aerobic Fitness and Muscle Strength Training after Spinal Cord Injury. Journal of Neurotrauma, 2019, 36, 2943-2963.	1.7	28

GLEN M DAVIS

#	Article	IF	CITATIONS
19	Activity-Based Therapy in a Community Setting for Independence, Mobility, and Sitting Balance for People With Spinal Cord Injuries. Journal of Central Nervous System Disease, 2019, 11, 117957351984162.	0.7	10
20	Electrically evoked wrist extensor muscle fatigue throughout repetitive motion as measured by mechanomyography and near-infrared spectroscopy. Biomedizinische Technik, 2019, 64, 439-448.	0.9	4
21	Leisure time physical activity participation in individuals with spinal cord injury in Malaysia: barriers to exercise. Spinal Cord, 2018, 56, 806-818.	0.9	24
22	Influence of exercise modality on cardiac parasympathetic and sympathetic indices during post-exercise recovery. Journal of Science and Medicine in Sport, 2018, 21, 1079-1084.	0.6	11
23	Pathophysiology of exercise intolerance in pulmonary arterial hypertension. Respirology, 2018, 23, 148-159.	1.3	31
24	Variations of ankle-foot orthosis-constrained movements increase ankle range of movement while maintaining power output of recumbent cycling. Biomedizinische Technik, 2018, 63, 691-697.	0.9	6
25	Muscle oxygenation during hybrid arm and functional electrical stimulation–evoked leg cycling after spinal cord injury. Medicine (United States), 2018, 97, e12922.	0.4	6
26	Neural Network-Based Muscle Torque Estimation Using Mechanomyography During Electrically-Evoked Knee Extension and Standing in Spinal Cord Injury. Frontiers in Neurorobotics, 2018, 12, 50.	1.6	8
27	Mechanomyography responses characterize altered muscle function during electrical stimulation-evoked cycling in individuals with spinal cord injury. Clinical Biomechanics, 2018, 58, 21-27.	0.5	8
28	Higher exercise intensity delays postexercise recovery of impedance-derived cardiac sympathetic activity. Applied Physiology, Nutrition and Metabolism, 2017, 42, 834-840.	0.9	17
29	Exergaming for Individuals with Spinal Cord Injury: A Pilot Study. Games for Health Journal, 2017, 6, 279-289.	1.1	12
30	Longer exercise duration delays post-exercise recovery of cardiac parasympathetic but not sympathetic indices. European Journal of Applied Physiology, 2017, 117, 1897-1906.	1.2	15
31	Effects of Activity-Based Therapy Interventions on Mobility, Independence, and Quality of Life for People with Spinal Cord Injuries: A Systematic Review and Meta-Analysis. Journal of Neurotrauma, 2017, 34, 1726-1743.	1.7	37
32	Exergaming boxing versus heavy-bag boxing: are these equipotent for individuals with spinal cord injury?. European Journal of Physical and Rehabilitation Medicine, 2017, 53, 527-534.	1.1	16
33	Mechanomyography and Torque during FES-Evoked Muscle Contractions to Fatigue in Individuals with Spinal Cord Injury. Sensors, 2017, 17, 1627.	2.1	13
34	Estimation of Electrically-Evoked Knee Torque from Mechanomyography Using Support Vector Regression. Sensors, 2016, 16, 1115.	2.1	20
35	Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review. PLoS ONE, 2016, 11, e0149024.	1.1	62
36	Torque and mechanomyogram relationships during electrically-evoked isometric quadriceps contractions in persons with spinal cord injury. Medical Engineering and Physics, 2016, 38, 767-775.	0.8	11

GLEN M DAVIS

#	Article	IF	CITATIONS
37	A novel motion sensor-driven control system for FES-assisted walking after spinal cord injury: A pilot study. Medical Engineering and Physics, 2016, 38, 1223-1231.	0.8	4
38	Submaximal exercise intensity modulates acute post-exercise heart rate variability. European Journal of Applied Physiology, 2016, 116, 697-706.	1.2	55
39	Energy Expenditure in Individuals With Spinal Cord Injury Quantified by Doubly Labeled Water and a Multi-Sensor Armband. Journal of Physical Activity and Health, 2015, 12, 163-170.	1.0	22
40	Cardiorespiratory and Muscle Metabolic Responses During Conventional Versus Motion Sensorâ€Assisted Strategies for Functional Electrical Stimulation Standing After Spinal Cord Injury. Artificial Organs, 2015, 39, 855-862.	1.0	7
41	Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury. Sensors, 2014, 14, 22907-22920.	2.1	10
42	The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury. Sensors, 2014, 14, 12598-12622.	2.1	24
43	Evaluation of isokinetic muscle performance using a novel mechanomyogram sensor. , 2014, , .		0
44	Assessment of muscle performance using vibromyography (VMG) and electromyography(EMG). , 2014, , .		1
45	Physical activity and fitness in women with metastatic breast cancer Journal of Clinical Oncology, 2013, 31, 136-136.	0.8	0
46	Comparison of methods to assess energy expenditure and physical activity in people with spinal cord injury. Journal of Spinal Cord Medicine, 2012, 35, 35-45.	0.7	60
47	Functional Electrical Stimulation Control of Standing and Stepping After Spinal Cord Injury: A Review of Technical Characteristics. Neuromodulation, 2009, 12, 180-190.	0.4	55
48	Development of an isokinetic FES leg stepping trainer (iFES-LST) for individuals with neurological disability. , 2009, , .		9
49	Cardiorespiratory, Metabolic, and Biomechanical Responses During Functional Electrical Stimulation Leg Exercise: Health and Fitness Benefits. Artificial Organs, 2008, 32, 625-629.	1.0	96
50	Muscle oxygenation following concentric exercise. Isokinetics and Exercise Science, 2007, 15, 309-319.	0.2	2
51	Cardiovascular responses during arm exercise and orthostatic challenge in individuals with paraplegia. European Journal of Applied Physiology, 2001, 85, 89-95.	1.2	12
52	Effects of electrical stimulation leg training during the acute phase of spinal cord injury: a pilot study. European Journal of Applied Physiology, 2000, 83, 409-415.	1.2	64
53	Carotid baroreflex control of heart rate and blood pressure during ES leg cycling in paraplegics. Journal of Applied Physiology, 2000, 88, 957-965.	1.2	16
54	Cardiovascular responses to an orthostatic challenge and electrical-stimulation-induced leg muscle contractions in individuals with paraplegia. European Journal of Applied Physiology and Occupational Physiology, 1999, 80, 205-212.	1.2	24

#	Article	IF	CITATIONS
55	A comparison of the attitude of paraplegic individuals to the Walkabout Orthosis and the Isocentric Reciprocal Gait Orthosis. Spinal Cord, 1997, 35, 580-584.	0.9	27
56	Oxygen uptake and heart rate responses during arm vs combined arm/electrically stimulated leg exercise in people with paraplegia. Spinal Cord, 1997, 35, 680-685.	0.9	29